Answer:
Explanation:
Given
Temperature of solid 
Einstein Temperature 
Heat Capacity in the Einstein model is given by
![C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}](https://tex.z-dn.net/?f=C_v%3D3R%5Cleft%20%5B%20%5Cfrac%7BT_E%7D%7BT%7D%5Cright%20%5D%5E2%5Cfrac%7Be%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D%7D%7B%5Cleft%20%28%20e%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D-1%5Cright%20%29%5E2%7D)

Substitute the values


Answer:
C = 292 Mbps
Explanation:
Given:
- Signal Transmitted Power P = 250mW
- The noise in channel N = 10 uW
- The signal bandwidth W = 20 MHz
Find:
what is the maximum capacity of the channel?
Solution:
-The capacity of the channel is given by Shannon's Formula:
C = W*log_2 ( 1 + P/N)
- Plug the values in:
C = (20*10^6)*log_2 ( 1 + 250*10^-3/10)
C = (20*10^6)*log_2 (25001)
C = (20*10^6)*14.6096
C = 292 Mbps
Answer:
ok I will help you ha Ha ha ha ha ha ha ha ha ha ha ha
Answer:
the car to the right
Explanation:
its in the name the RIGHT of way hope it helps good luck