Answer: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^4
Explanation:
I suggest looking at the electron configuration chart, it has really helped me a lot :)
To be able to answer this, you need to have a phase diagram of Cu-Ni alloy. Create a vertical line along 40% in the x-axis. Then, create a horizontal line along the temperature at 1,300°C. The intersection lies outside of the α-L boundary.
<em>Therefore, the system consist solely of the L-phase: 100% L.</em>
The artificial fixation of nitrogen (N2) has enormous energy, environmental, and societal impact, the most important of which is the synthesis of ammonia (NH3) for fertilizers that help support nearly half of the world's population.
<h3>Artificial fixation of nitrogen</h3>
a) The equilibrium constant expression is Kp=PCH4 PH2 OP CO×PH 23.
(b) (i) As the pressure increases, the equilibrium will shift to the left so that less number of moles are produced.
(ii) For an exothermic reaction, with the increase in temperature, the equilibrium will shift in the backward direction.
(iii) When a catalyst is used, the equilibrium is not disturbed. The equilibrium is quickly attained
To learn more about equilibrium constant visit the link
brainly.com/question/10038290
#SPJ4
Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2
Answer:
well we can't awnser this we don't have the full information srry♥️✨