(a) The horizontal and vertical components of the ball’s initial velocity is 37.8 m/s and 12.14 m/s respectively.
(b) The maximum height above the ground reached by the ball is 8.6 m.
(c) The distance off course the ball would be carried is 0.38 m.
(d) The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
<h3>
Horizontal and vertical components of the ball's velocity</h3>
Vx = Vcosθ
Vx = 39.7 x cos(17.8)
Vx = 37.8 m/s
Vy = Vsin(θ)
Vy = 39.7 x sin(17.8)
Vy = 12.14 m/s
<h3>Maximum height reached by the ball</h3>

Maximum height above ground = 7.51 + 1.09 = 8.6 m
<h3>Distance off course after 2 second </h3>
Upward speed of the ball after 2 seconds, V = V₀y - gt
Vy = 12.14 - (2x 9.8)
Vy = - 7.46 m/s
Horizontal velocity will be constant = 37.8 m/s
Resultant speed of the ball after 2 seconds = √(Vy² + Vx²)

<h3>Resultant speed of the ball and crosswind</h3>

<h3>Distance off course the ball would be carried</h3>
d = Δvt = (38.72 - 38.53) x 2
d = 0.38 m
The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
Learn more about projectiles here: brainly.com/question/11049671
Fair enough, but you'll have to tell us the volume of the bar first.
Answer:
<em><u>5</u></em><em><u>0</u></em><em><u>.</u></em><em><u>6</u></em><em><u>3</u></em><em><u> </u></em><em><u>f</u></em><em><u>t</u></em><em><u>/</u></em><em><u>s</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>d</u></em><em><u>p</u></em><em><u>)</u></em>
Explanation:
Speed = Distance/Time
80/1.58 = 50.63291139
= <u>50.63</u><u> </u><u>f</u><u>t</u><u>/</u><u>s</u> (2dp)
Answer:
V = V_0 - (lamda)/(2pi(epsilon_0))*ln(R/r)
Explanation:
Attached is the full solution
Answer:
the acceleration of the car is 5m/s2