Sand and water can be separated by any of the following methods:
1. Sedimentation and decantation: This method involves the mixture being kept undisturbed for some time. After some time, sand being heavier and insoluble in water, settles down at the bottom of container. Now, water is poured into another container to separate it from sand.
2. Filtration: This method involves the mixture being passed through a filter paper (a filter with very fine pores). Sand particles being larger in size are retained by the filter paper and get separated from water.
I hope this helps! :D
Answer:
92.4 grams.
Explanation:
- From the balanced reaction:
<em>CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O,</em>
1.0 mole of CaCO₃ reacts with 2.0 moles of HCl to produce 1.0 mole of CaCl₂, 1.0 mole of CO₂, and 1.0 mole of H₂O.
- We need to calculate the no. of moles of (104 g) of CaCO₃:
<em>no. of moles of CaCO₃ = mass/molar mass</em> = (104 g)/(100.08 g/mol) = <em>1.039 mol.</em>
<u><em>Using cross multiplication:</em></u>
1.0 mole of CaCO₃ produce → 1.0 mole of CaCl₂.
∴ 1.039 mole of CaCO₃ produce → 1.039 mole of CaCl₂.
∴ The amount of CaCl₂ produced = no. of moles x molar mass = (1.039 mol)(110.98 g/mol) = 114.3 g.
∵ percent yield of the reaction = [(actual yield)/(theoretical yield)] x 100.
Percent yield of the reaction = 80.15%, theoretical yield = 115.3 g.
<em>∴ actual yield = [(percent yield of the reaction)(theoretical yield)]/100 </em>= [(80.15%)/(115.3 g)] / 100 = <em>92.42 g ≅ 92.4 g.</em>
Answer:
Double Displacement reaction
Explanation:
BaCl2 + Na2SO4 → 2NaCl + BaSO4
Double displacement reaction occurs when the cations and anions of the two reacting compound interchange, forming a new products. From the equation given above, Na^+ switch place with Ba^2 + and likewise Cl^- with (SO4) ^2- to form NaCl and BaSO4.
I think the answer is B. static charge. I hope this helps! :)