Answer:
The correct option is
a. v = 
Explanation:
Time at which the object start fall t = 0
The acceleration a is given by a = g - bV
Where V = Speed of the object
Speed V² = u² + 2·a·h
However with the drag force the object will approach terminal velocity as t becomes progressively larger whereby v will stop increasing
Option a. is the only option that has limiting value of v which is in the range of g as t increases ∴ option a. is the correct option.
v =
as t increases
→ 1 s and v→ g/b m/s
Answer:
electron dot diagram is the answer to your question.
Answer:
No.
Explanation:
Given that Kevin decides to soup up his car by replacing the car's wheels with ones that have 1.4 times the diameter of the original wheels. Note that the speedometer in a car is calibrated based on the tire's diameter and on the distance the tire covers in each revolution. (a) Will the reading of the speedometer change ?
Considering the formula
V = wr
Where
V = linear speed
W = angular speed
r = radius of the wheel.
But W = 2πrf
Where the the 2 and pi are constant. The radius of the first wheel will be small but counter balance with the larger frequency.
While the radius of the second wheel may be large but it will be of a small frequency.
We can therefore conclude that the reading on the speedometer will not change. Because speedometer will read the linear speed V.
Answer:
How long or wide something is
Explanation:
Answer:
The range of wavelengths of the sound is 7692.30 m and 3846.15 m
Explanation:
A bat emits pulses of sound at a frequency between 39 kHz and 78 kHz. It is required to find the range of wavelengths of this sound.
Bat uses ultrasonic waves. It moves with the speed of light.
If f = 39 kHz,

If f = 78 kHz,

So, the range of wavelengths of the sound is 7692.30 m and 3846.15 m.