Answer:
A)
0.395 m
B)
2.4 m/s
Explanation:
A)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= initial position of spring from equilibrium position = 0.21 m
= initial speed of the cart = 2.0 ms⁻¹
= amplitude of the oscillation = ?
Using conservation of energy
Final spring energy = initial kinetic energy + initial spring energy

B)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= amplitude of the oscillation = 0.395 m
= maximum speed at the equilibrium position
Using conservation of energy
Kinetic energy at equilibrium position = maximum spring potential energy at extreme stretch of the spring

Explanation:
given,
mass of one planet (m1)=2*10^23 kg
mass of another planet (m2)=5*10^22kg
distance between them(d)=3*10^16m
gravitational constant(G)=6.67*10^-11Nm^2kg^-2
gravitational force between them(F)=?
we know,
F=Gm1m2/d^2
or, F=6.67*10^-11*2*10^23*5*10^22/(3*10^16)^2
or, F=6.67*2*5*10^-11+23+22/3*3*10^32
or, F=66.7*10^34/9*10^32
or, F=7.41*10^34-32
•°• F=7.41*10^2
thus, the gravitational force between them is 7.14*10^2
I think the answer is 2283g
Answer:
A
Explanation:
Analytical people are less responsive to others. They hence tend to focus more on work than people and are less interested in leading, being happier to work by themselves. They may be prudent and systematic, making them good at analytic work.
Some character traits of Analytical people
Focuses on work and working more than people
Likes to be correct and will take time to ensure this
Thoughtful, careful fact-oriented and precise
Good at problem-solving
Likes organization and structure
Avoids working in a group, preferring to work alone
Can be over-critical and unresponsive
Cautious in decision-making
When stressed may withdraw or become headstrong
Answer:
Behaves as a wave.
Explanation:
The dual nature of light means that light behaves as a wave. If the light consisted of small particles, the alternating light and dark bands would not have occurred.
Sometimes it behaves like a particle (called a photon), which explains how light travels in straight lines.