Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm
Answer:
The unit for mass is the kilogram (Kg).
Explanation:
Hope this helped!! <3 good luckk!!
Very simply, you get twice as much Hydrogen as Oxygen, because the chemical formula is H2O, meaning two hydrogen atoms bonded to one oxygen atom.
Tops stops spinning because it doesn't have energy or ran out of force for example when you spin a top you give force to it then after 30 sec it going to stop going slower and slower that Is losing energy that's how tops stops spinning
Answer:
The electron pair geometry is Trigonal planar
Molecular geometry - Bent
Approximate bond angle - <120°
Explanation:
The valence shell electron pair repulsion theory enables us to predict the shapes of molecules based on the number of electron pairs present on the valence shell of the central atom and based on the hybridization state of the central atom.
sp2 hybridization corresponds to trigonal planar geometry. Let us recall that the presence of lone pairs causes a deviation of the molecular geometry from the expected geometry based on the number of electron pairs.
Hence, owing to one lone pair present, the observed molecular geometry is bent.