Answer:
Period of the signal.
Explanation:
So, this question is all about a concept in physics or astronomy which is called or known as Radiation Astronomy and Galactic Nuclei that are active. This concept talks most about Quasars; a powerful radiating object which derives its power from black holes.
When You take a look at Quasars, we get the to know that the more you think you can see, the more they move away from us.
Thus, when "You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the "PERIOD OF THE SIGNAL.
NB: not the amplitude but the period.
Answer:
Magnetic fields exist near a magnet, farther away from a magnet, and within a magnet.
So, the answer is D. All of the above.
Let me know if this helps!
In the process of peppering the question with those forty (40 !) un-necessary quotation marks, you neglected to actually show us the illustration. So we have no information to describe the adjacent positions, and we're not able to come up with any answer to the question.
I think that this is false but I am not sure
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J