Work needed: 720 J
Explanation:
The work needed to stretch a spring is equal to the elastic potential energy stored in the spring when it is stretched, which is given by

where
k is the spring constant
x is the stretching of the spring from the equilibrium position
In this problem, we have
E = 90 J (work done to stretch the spring)
x = 0.2 m (stretching)
Therefore, the spring constant is

Now we can find what is the work done to stretch the spring by an additional 0.4 m, that means to a total displacement of
x = 0.2 + 0.4 = 0.6 m
Substituting,

Therefore, the additional work needed is

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
Both of them reach the lake at the same time.
Explanation:
We have equation of motion s = ut + 0.5at²
Vertical motion of James : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

Vertical motion of John : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

So both times are same.
Both of them reach the lake at the same time.
Answer:
hope you like it
Explanation:
An object that is partly, or completely, submerged experiences a greater pressure on its bottom surface than on its top surface. This causes a resultant force upwards. This force is called upthrust . The upthrust force is equal in size to the weight of the fluid displaced by the object.
Buoyancy or upthrust, is an upward force exerted by a fluid that opposes the weight of an immersed object.It is the force that pushes an object up. The upthrust, or buoyancy, keeps ships afloat. The upthrust, or buoyancy, keeps swimmers on top of the water.
Power is defined as
P = I*V
where I is the current and V is the voltage
Ohm's law gives us the relation betwen Voltage and current in a resistive component
V = I*R , Then
P = V² / R
We solve for R,
R = (110 V)²/ 75W = 161.33 ohms