Answer:
The amount of solute added.
Explanation:
The amount of solute added is directly proportional to the number of ions.
The higher the amount added the higher the number of moles.
The number of moles is multiplied by the Avogadro's constant to get the number ions.
No of ions= No of moles × L
L is the Avogadro's number.
Answer:
I would say the last one because mass is not created nor destroyed.
Explanation:
The answer would be c as the cart is not in motion therefor ruling out kinetic and it is completely at rest making all of it energy potential
Answer:
A)
1. Reaction will shift rightwards towards the products.
2. It will turn green.
3. The solution will be cooler..
B) It will turn green.
Explanation:
Hello,
In this case, for the stated equilibrium:

In such a way, by thinking out the Le Chatelier's principle, we can answer to each question:
A)
1. If potassium bromide, which adds bromide ions, is added more reactant is being added to the solution, therefore, the reaction will shift rightwards towards the products.
2. The formation of the green complex is favored, therefore, it will turn green.
3. The solution will be cooler as heat is converted into "cold" in order to reestablish equilibrium.
B) In this case, as the heat is a reactant, if more heat is added, more products will be formed, which implies that it will turn green.
Regards.
Answer:
Nitrifying Bacteria are a group of aerobic bacteria important in the nitrogen cycle as converters of soil ammonia to nitrates, compounds usable by plants. An example is nitrosomonas or nitrobacter and species in that family.
The schematic diagram is attached below, which summarises the oxidation of ammonia or free nitrogen in the soil to nitrates for the cowpea plant's utilisation.