In a periodic table periods are horizontal and groups are vertical. Horizontal is left to right and vertical is up and down.
Hope this helps!
Answer:
C.
Explanation:
Cells use oxygen to release energy stored in sugars such as glucose. I'm not sure if that will support the reason why I picked (C.)
The noble gases are helium, neon, argon, krypton, xenon, radon, and ununoctium. The noble gases are relatively nonreactive. This is because they have a completevalence shell<span>. They have little tendency to </span>gain<span> or lose </span>electrons. <span>These gases all have similar properties under standard conditions: they are all odorless, colorless, monatomic gases with very low chemical </span>reactivity<span>. The six noble gases that occur naturally are helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), and Radon (Rn).</span>
Alcoholic fermentation is mainly used by various yeast species to make energy.
If there is no oxygen available, the yeasts have in the alcoholic fermentation another possibility of energy supply. But they can - as compared with cellular respiration - recover substantially less energy from glucose, in the form of adenosine triphosphate (ATP): by complete oxidation, a molecule of glucose provides 36 molecules of ATP, but by alcoholic fermentation only 2 molecules of ATP. These two molecules are obtained in glycolysis, the first step in the chain of reactions for both cellular respiration and fermentation.
The two additional steps of the fermentation, and thus the production of ethanol serve not to make energy, but the regeneration of the NAD + cofactor used by the enzymes of glycolysis. As NAD + is available in limited quantities, it is converted by the NADH reduced state fermentation enzymes to the NAD + oxidized state by reduction of acetaldehyde to ethanol.
Answer:
In the third step of the citric acid cycle, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released.
Explanation:
In the first step of citric acid cycle, acetylCoA combines with a four-carbon molecule, oxaloacetate, forming a six-carbon molecule, citrate.
In the second step, the citrate in the presence of enzyme anicotase is converted into isocitrate.
<u>In the third step, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released leaving behind one five-carbon molecule called as α-ketoglutarate. During this step, NAD⁺ is reduced to form NADH. </u>
<u>This is first round of the citric acid cycle that could possibly release a carbon atom originating from this acetyl CoA.</u>
On series of reaction, another carbon dioxide molecule also being relased and oxaloacetate is regenerated again.