Answer:
a) 69.3 m/s
b) 18.84 s
Explanation:
Let the initial velocity = u
The vertical and horizontal components of the velocity is given by uᵧ and uₓ respectively
uᵧ = u sin 40° = 0.6428 u
uₓ = u cos 40° = 0.766 u
We're given that the horizontal distance travelled by the projectile rock (Range) = 1 km = 1000 m
The range of a projectile motion is given as
R = uₓt
where t = total time of flight
1000 = 0.766 ut
ut = 1305.5
The vertical distance travelled by the projectile rocks,
y = uᵧ t - (1/2)gt²
y = - 900 m (900 m below the crater's level)
-900 = 0.6428 ut - 4.9t²
Recall, ut = 1305.5
-900 = 0.6428(1305.5) - 4.9 t²
4.9t² = 839.1754 + 900
4.9t² = 1739.1754
t = 18.84 s
Recall again, ut = 1305.5
u = 1305.5/18.84 = 69.3 m/s
Answer:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
Explanation:
The general kinematic equation for horizontal displacement is gives as:
Δx = v₀t + (1/2)at²
Where
Δx = change in the x direction
v₀ = initial velocity
t = time
a = acceleration
If the body is vertically instead of horizontally, Δx is changed to Δy
Δy = v₀t + (1/2)at²
For a vertical moving body, the acceleration it experiences is the gravitational accerelation of the earth 'g'
So the equation becomes:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
This type of system is an example of open system because the vapors leave the system and goes into the atmosphere.
<h3>
What is open system?</h3>
An open system is a type of system that has external interactions which means energy, or material transfers into or out of the system.
So we can conclude that this type of system is an example of open system because the vapors leave the system and goes into the atmosphere.
Learn more about system here: brainly.com/question/14323743
#SPJ1
Answer:
<em>18808.7 m/s^2</em>
Explanation:
Given
Length of the pendulum L = 1.44 m
Number of complete cycles of oscillation n = 1.10 x 10^2
total time of oscillation t = 2.00 x 10^2 s
The period of the T = n/t
T = (1.10 x 10^2)/(2.00 x 10^2) = 0.55 ^-s
The period of a pendulum is gotten as
T = 
where g is the acceleration due to gravity
substituting values, we have
0.55 = 
0.0875 = 
squaring both sides of the equation, we have
7.656 x 10^-3 = 144/g
g = 144/(7.656 x 10^-3) = <em>18808.7 m/s^2</em>
Answer:
748 treats.
Explanation:
If the trainer gives out 34 treats and gave them out for 22 shows, then to find the total you need to multiply 34 by 22, or (a longer but more simple way) add 34, 22 times.