Answer:
1.5 unit of product per min
Explanation:
30 units of product was moved in 30 minutes.
Number of units left = Total number of units-number of units moved
=75-30 =45 units
45 units is available to be moved for the rest 30 min. To be able to achieve this goal of 75 units of product per hour.
45/30 amount of units must be moved in 1 min
=1.5 unit per min
Answer:
C)You should use the thin cooking twine.
Explanation:
A)You can choose either because they are the same length and will produce the same wave speed.
B)You should use the heavy rope.
C)You should use the thin cooking twine.
The speed of wave in a string is given by the following formula:
|
| = 
Where |
| = speed of wave,
= tension in the string, and μ = mass per length of the string.
<em>Even though the two strings have the same length, the μ (mass/length) for the heavy rope will be more than the that of a thin rope. Consequently, the </em>
<em>:μ for the thin rope will be higher than that of the heavy rope and as such, gives a bigger |</em>
<em>|. </em>
Therefore, the thin rope should be used in order to get a faster wave speed in the telephone.
The correct option is C.
Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Static equilibrium means that all forces are equal, so make this easiest you want to break F1 into it's horizontal and vertical components. As there are no other forces acting in the horizontal, we know the horizontal component of F1 is 40N. This allows the vertical component to be found using pythagorus theorem. After finding the vertical and horizontal components, you just have to add the vertical components to find the difference between the up and down.
PV=nRT
(P)(86.5)=(41.5)(.08206)(300.15)
(P)(86.5)=(1022.157824)
P=11.81685345 atm