Answer:
9
Explanation:
You get this answer by adding the protons and neutrons together.
Answer:
velocity
Explanation:
the displacement of an object during a specific unit of time.
Back emf is 85.9 V.
<u>Explanation:</u>
Given-
Resistance, R = 3.75Ω
Current, I = 9.1 A
Supply Voltage, V = 120 V
Back emf = ?
Assumption - There is no effects of inductance.
A motor will have a back emf that opposes the supply voltage, as the motor speeds up the back emf increases and has the effect that the difference between the supply voltage and the back emf is what causes the current to flow through the armature resistance.
So if 9.1 A flows through the resistance of 3.75Ω then by Ohms law,
The voltage across the resistance would be
v = I x R
= 9.1 x 3.75
= 34.125 volts
We know,
supply voltage = back emf + voltage across the resistance
By plugging in the values,
120 V = back emf + 34.125 V
Back emf = 120 - 34.125
= 85.9 Volts
Therefore, back emf is 85.9 V.
Answer:

Explanation:
We know that impedance of a RLC circuit is given by 
So
here R is resistance
is inductive reactance and
is capacitive reactance
To minimize the impedance
should be zero we know that 
So 


We know that 
So 

Where f is resonance frequency