1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
3 years ago
10

You are walking up an icy slope. suddenly your feet slip, and you start to slide backward. will you slide at a constant speed, o

r will you accelerate?

Physics
2 answers:
Len [333]3 years ago
7 0

Answer:

Will accelerate with g.sinθ, where θ is the angle between the ground and the inclination of the slope.

Explanation:

When any mass is sliding down the inclined plane will be affected by the acceleration due to gravity and some component of this acceleration will act on the body.

Let θ be the angle of inclination of the inclined slope from the horizontal.

then from the attached figure we can clearly get the component of acceleration along the slope.

Aleks04 [339]3 years ago
6 0
You will accelerate down the slope.
You might be interested in
Describe a device that transforms thermal energy into<br> another useful form.<br> tes that
spin [16.1K]

Answer: heat engine

Explanation:

4 0
3 years ago
A 0.29 kg particle moves in an xy plane according to x(t) = - 19 + 1 t - 3 t3 and y(t) = 20 + 7 t - 9 t2, with x and y in meters
Artist 52 [7]

Answer:

Part a)

F = 7.76 N

Part b)

\theta = -137.7 degree

Part c)

\theta = -127.7 degree

Explanation:

As we know that acceleration is rate of change in velocity of the object

So here we know that

x = -19 + t - 3t^3

y = 20 + 7t - 9t^2

Part a)

differentiate x and y two times with respect to time to find the acceleration

a_x = \frac{d^2}{dt^2}(-19 + t - 3t^3)

a_x = \frac{d}{dt}(0 +1 - 9t^2)

a_x = -18t

a_y = \frac{d^2}{dt^2}(20 + 7t - 9t^2)

a_y = \frac{d}{dt}(0 +7 - 18t)

a_y = -18

Now the acceleration of the object is given as

\vec a = (-18t)\hat i + (-18)\hat j

at t= 1.1 s we have

\vec a = -19.8 \hat i - 18 \hat j

now the net force of the object is given as

\vec F = m\vec a

\vec F = (0.29 kg)(-19.8 \hat i - 18 \hat j)

\vec F = -5.74 \hat i - 5.22 \hat j

now magnitude of the force will be

F = \sqrt{5.74^2 + 5.22^2} = 7.76 N

Part b)

Direction of the force is given as

tan\theta = \frac{F_y}{F_x}

tan\theta = \frac{-5.22}{-5.74}

\theta = -137.7 degree

Part c)

For velocity of the particle we have

v_x = \frac{dx}[dt}

v_x = (0 +1 - 9t^2)

v_y = \frac{dy}{dt}

v_y = (0 +7 - 18t)

now at t = 1.1 s

\vec v = -9.89\hat i - 12.8 \hat j

now the direction of the velocity is given as

\theta = tan^{-1}(\frac{v_y}{v_x})

\theta = tan^{-1}(\frac{-12.8}{-9.89})

\theta = -127.7 degree

7 0
3 years ago
A system absorbed 44 joules of heat from its surroundings. After doing work, the increase in the internal energy of the system i
Lunna [17]
Idk sorry maybe try @amyletbe
6 0
3 years ago
Read 2 more answers
A 1.1 kg ball is attached to a ceiling by a 2.16 m long string. The height of the room is 5.97 m . The acceleration of gravity i
nydimaria [60]

1. -23.2 J

The gravitational potential energy of the ball is given by

U=mgh

where

m = 1.1 kg is the mass of the ball

g = 9.8 m/s^2 is the acceleration of gravity

h is the height of the ball, relative to the reference point chosen

In this part of the problem, the reference point is the ceiling. So, the ball is located 2.16 m below the ceiling: therefore, the heigth is

h = -2.16 m

And the gravitational potential energy is

U=(1.1 kg)(9.8 m/s^2)(-2.16 m)=-23.2 J

2. 41.1 J

Again, the gravitational potential energy of the ball is given by

U=mgh

In this part of the problem, the reference point is the floor.

The height of the ball relative to the floor is equal to the height of the floor minus the length of the string:

h = 5.97 m - 2.16 m = 3.81 m

And so the gravitational potential energy of the ball relative to the floor is

U=(1.1 kg)(9.8 m/s^2)(3.81 m)=41.1 J

3. 0 J

As before, the gravitational potential energy of the ball is given by

U=mgh

Here the reference point is a point at the same elevation of the ball.

This means that the heigth of the ball relative to that point is zero:

h = 0 m

And so the gravitational potential energy is

U=(1.1 kg)(9.8 m/s^2)(0 m)=0 J

4 0
4 years ago
Pls I need help for the problem solving part.
Bogdan [553]

i don't know the anss , sorry.

3 0
3 years ago
Other questions:
  • Three 10-cm-long rods form an equilateral triangle. Two of the rods are charged to + 19 nC, the third to - 19 nC.What is the ele
    14·1 answer
  • How many 3.2cm paperclips could fit on a football field
    10·1 answer
  • What types of waves make up the smallest part of the electromagnetic spectrum?
    8·2 answers
  • What is the mass of a cart that accelerates at 3.0 m/s if a 0.5 N force is applied?
    6·1 answer
  • A toboggan approaches a snowy hill moving at 12.4 m/s. The coefficients of static and kinetic friction between the snow and the
    9·1 answer
  • Does water not have anomalous expansion?​
    15·2 answers
  • How efficient is a pulley system if an operator has to pull 2.5m of rope to lift a 250 N pail of water a distance of 4.5 m?
    6·1 answer
  • If an 80 kg is running at 2m/s, what is this man's momentum?<br> Hint: p=mv
    10·1 answer
  • 7. A 2.0 kg block, starting from rest, is pushed by a
    13·1 answer
  • Aluminium,metal,glass,and paper:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!