Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N
I think it’s Energy is lost when machines don’t work right.
I think, I do think.. that it is D.
Wouldn't it be simple to divide 5 from 20, that would equal 4.
4 earthworms per square meter.
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>
Answer:
13.5
Explanation:
Mass: 5kg
Initial Velocity: -15
Final Velocity: 12
Force: 10
We can use the equation: Vf = Vi + at
We need to find acceleration, and we can use the equation, F=ma,
We have mass and the force so it would look like this, 10=5a, and 5 times 2 would equal 10, so acceleration would be 2.
Now we have all the variables to find time.
Back to Vf = Vi + at, plug the numbers in, 12 = -15 + 2(t)
Plugging them in into desmos gives 13.5 for time.