1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
3 years ago
10

You are walking up an icy slope. suddenly your feet slip, and you start to slide backward. will you slide at a constant speed, o

r will you accelerate?

Physics
2 answers:
Len [333]3 years ago
7 0

Answer:

Will accelerate with g.sinθ, where θ is the angle between the ground and the inclination of the slope.

Explanation:

When any mass is sliding down the inclined plane will be affected by the acceleration due to gravity and some component of this acceleration will act on the body.

Let θ be the angle of inclination of the inclined slope from the horizontal.

then from the attached figure we can clearly get the component of acceleration along the slope.

Aleks04 [339]3 years ago
6 0
You will accelerate down the slope.
You might be interested in
A 6.00-mH solenoid is connected in series with a 5.0-μF capacitor and an AC source. The solenoid has internal resistance 3.0 Ω w
son4ous [18]

Answer:

5773.50269 Hz

23 A

Explanation:

L = Inductance = 6 mH

C = Capacitance = 5 μF

R = Resistance = 3 Ω

\epsilon = Maximum emf = 69 V

Resonant angular frequency is given by

\omega=\dfrac{1}{\sqrt{LC}}\\\Rightarrow \omega=\dfrac{1}{\sqrt{6\times 10^{-3}\times 5\times 10^{-6}}}\\\Rightarrow \omega=5773.50269\ Hz

The resonant angular frequency is 5773.50269 Hz

Current is given by

I=\dfrac{\epsilon}{R}\\\Rightarrow I=\dfrac{69}{3}\\\Rightarrow I=23\ A

The current amplitude at the resonant angular frequency is 23 A

7 0
3 years ago
A 1000 kg car accelerates from rest at a rate of 10 m/s² for 3 seconds. A) what is the final velocity of the car?
Lorico [155]

Answer:

Refer to the attachment!~

5 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
Which free body diagram is in equilibrium?
bearhunter [10]

A. because everything is balanced.

6 0
3 years ago
Eating eggs for breakfast increases grades. What is the constant?
Feliz [49]

Answer and Explanation:

The answer would be: <u>Breakfast</u>

<u></u>

Breakfast would be the constant of this scenario because this doesn't change. The time of day (for eating eggs) will always be in the morning, so that wouldn't change.

Eating eggs would be the independent variable because you can change this value. This could be a different food or an amount of the food that is being eaten.

The grades would be the dependent variable because the score <em>depends</em> on the eating of eggs.

<em><u>#teamtrees #PAW (Plant And Water)</u></em>

<em><u></u></em>

<em><u>I hope this helps!</u></em>

6 0
3 years ago
Other questions:
  • In a simple harmonic motion, when the displacement from the equilibrium position is at its maximum,
    9·1 answer
  • Select the correct boxes.
    10·1 answer
  • Two speakers create identical
    6·1 answer
  • What is the wavelength (in air) of a 13.0 khz vlf radio wave?
    8·1 answer
  • Why are atoms electrically neutral?
    8·1 answer
  • When light falls on objects, it interacts with them in different ways as shown in the images. What type of interaction is seen i
    11·1 answer
  • Question 25
    10·1 answer
  • 1. Choose the statement that does not accurately describe observations
    12·2 answers
  • 17 1. Which statement about Kepler's law of harmonies is correct?
    13·1 answer
  • What would be the magnitude of the electric field 0.75 m from a 0.63 C master charge and what would be the force on a 0.50 C tes
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!