Transverse wave, movement in which all focuses on a wave sway along ways at right edges to the course of the wave's development. Surface swells on water, seismic S (auxiliary) waves, and electromagnetic (e.g., radio and light) waves are instances of transverse waves. Waves come in two assortments.
Formula:
F = ma
F: force (N) m: mass (kg) a: acceleration (m/s^2)
Solution:
F = ma
F = 20 × 10
= 200N
Oceanic because it’s denser
Explanation:
Given:
Solving for
:

where:

Integrating to get
with initial conditions
:

Integrating to get x with initial conditions x(0) = 0:

When t=T:


Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.
Explanation:
- Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
- Let
be the speed of the river's current given as 1.00 m/s.
- Note that this speed is the magnitude of the velocity which is a vector quantity.
- The direction of the swimmer is upstream.
Hence the resultant velocity is given as,
= S — S 0
= 1.25 — 1
= 0.25 m/s.
Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.