The lower the frequency the lower the pitch sound.
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
If the frequency of the source is increased the current in the circuit will decrease.
Explanation:
The current through the circuit is given as;

Where;
V is the voltage in the AC circuit
Z is the impedance

Where;
R is the resistance
is the inductive reactance
= ωL = 2πfL
where;
L is the inductance
f is the frequency of the source
Finally, the current in the circuit is given as;

From the equation above, an increase in frequency (f) will cause a decrease in current (I).
Therefore, If the frequency of the source is increased the current in the circuit will decrease.
Answer:
The solar radiation is first intercepted by Earth's atmosphere, just a small part of the radiation is absorbed by gases such as water vapor. Some of the radiation is reflected back to space by the clouds and Earth's surface.