1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inga [223]
3 years ago
7

At what wind speed does a snowstorm become a blizzard?

Physics
1 answer:
navik [9.2K]3 years ago
5 0

To be a blizzard, a snow storm must have sustained winds or frequent gusts that are greater than or equal to 56 km/h (35 mph) with blowing or drifting snow which reduces visibility to 400 m or 0.25 mi or less and must last for a prolonged period of time—typically three hours or more.

You might be interested in
To develop muscle tone, a woman lifts a 2.50 kg weight held in her hand. She uses her biceps muscle to flex the lower arm throug
Romashka [77]

To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

\tau = Fr

Where,

F = Force

r = Radius

Replacing we have that,

\tau = Fr

\tau = 21cm (\frac{1m}{100cm})* 550N

\tau = 11.55Nm

The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore

I = 0.25Kg\cdot m^2 +(2.5kg)(0.24m)^2

I = 0.394kg\cdot m^2

Finally, angular acceleration is a result of the expression of torque by inertia, therefore

\tau = I\alpha \rightarrow \alpha = \frac{\tau}{I}

\alpha = \frac{11.55}{0.394}

\alpha = 29.3 rad/s^2

PART B)

The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians (\pi / 3), therefore

W = \tau \theta

W = 11.5* \frac{\pi}{3}

W = 12.09J

4 0
3 years ago
a projectile is launched at an angle of 30 degrees and lands later at the same level. if it's initial speed is 50 m/s, solve for
Mrrafil [7]
using \: the \: formula \\ t = \frac{2u \sin( \alpha ) }{g} where \: u = initial \: speed \: \\ \alpha = angle \: of \: projection \\ g = acceleration \: due \: to \: gravity \\ \frac{2 \times 50 \times \sin(30) }{10} \\ \frac{100 \times 0.5}{10} = \frac{50}{10} = 5seconds

Maximum height
= (Usinα)^2/2g
(50*0.5)^2/20
25^2/20
625/20
=31.25metres
horizontal distance = Range= [U^2 * sin2α]/g
[50^2 * sin60]/10
2500 * 0.8660/10
2165/10=216.5metres
3 0
3 years ago
Hi i need help pls help me
r-ruslan [8.4K]
The correct answer would be the last one
4 0
3 years ago
Read 2 more answers
You wish to cool a 1.83 kg block of tin initially at 88.0°C to a temperature of 57.0°C by placing it in a container of kerosene
uranmaximum [27]

Answer:

0.273 liters are needed to accomplish this task without boiling.

Explanation:

The minimum boiling point of kerosene is 150\,^{\circ}C. According to this question, we need to determine the minimum volume of liquid such that heat received is entirely sensible, that is, with no phase change.

If we consider a steady state process and that energy interactions with surrounding are negligible, then we get the following formula by the Principle of Energy Conservation:

\rho_{k}\cdot V_{k}\cdot c_{k}\cdot (T-T_{k,o}) = m_{t}\cdot c_{t}\cdot (T_{t,o}-T) (1)

Where:

\rho_{k} - Density of kerosene, measured in kilograms per cubic meter.

V_{k} - Volume of kerosene, measured in cubic meters.

c_{k}, c_{t} - Specific heats of the kerosene and tin, measured in joule per kilogram-Celsius.

T_{k,o}, T_{t,o} - Initial temperatures of kerosene and tin, measured in degrees Celsius.

T - Final temperatures of the kerosene-tin system, measured in degrees Celsius.

Please notice that the block of tin is cooled at the expense of the temperature of the kerosene until thermal equilibrium is reached.

From (1), we clear the volume of kerosene:

V_{k} = \frac{m_{t}\cdot c_{t}\cdot (T_{t,o}-T)}{\rho_{k}\cdot c_{k}\cdot (T-T_{k,o})}

If we know that m_{t} = 1.83\,kg, c_{t} = 218\,\frac{J}{kg\cdot ^{\circ}C}, T_{t,o} = 88\,^{\circ}C, T_{k,o} = 24.0\,^{\circ}C, T = 57\,^{\circ}C, c_{k} = 2010\,\frac{J}{kg\cdot ^{\circ}C} and \rho_{k} = 820\,\frac{kg}{m^{3}}, then the volume of the liquid needed to accomplish this task without boiling is:

V_{k} = \frac{(1.83\,kg)\cdot \left(218\,\frac{J}{kg\cdot ^{\circ}C} \right)\cdot (88\,^{\circ}C-57\,^{\circ}C)}{\left(820\,\frac{kg}{m^{3}} \right)\cdot \left(2010\,\frac{J}{kg\cdot ^{\circ}C} \right)\cdot (57\,^{\circ}C-24\,^{\circ}C)}

V_{k} = 2.273\times 10^{-4}\,m^{3}

V_{k} = 0.273\,L

0.273 liters are needed to accomplish this task without boiling.

3 0
3 years ago
What type of wave is energy transmitted and a definite direction in with a definite speed
SOVA2 [1]

A surface wave is a wave in which particles of the medium undergo a circular motion.

7 0
3 years ago
Read 2 more answers
Other questions:
  • Answer please I need help
    8·1 answer
  • The Mariana Trench is the deepest ocean trench on. This trench occurs at a plante boundary where
    8·1 answer
  • What happens to the Total Energy as the spring bounce?
    13·1 answer
  • A 5 m3 tank containing 5kg of an unknown ideal gas at 500 kPa is connected through a valve to another tank containing 10 kg of t
    14·1 answer
  • The resistance of moving surfaces produces
    10·2 answers
  • 2 Pont
    10·1 answer
  • The first step of the scientific method is
    7·2 answers
  • When a bow releases an arrow, the arrow
    13·2 answers
  • The position of a particle s given by x=3-2t+3t^2. What is its instantaneous velocity and instantaneous acceleration as t=3.
    14·1 answer
  • A force of 15 N is applied to a spring, causing it to stretch 0. 3 m. What is the spring constant for this particular spring? N/
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!