Based on the length of the Ethernet cable and the mass, the tension in the cable can be found to be 80 N.
<h3>How much tension is in the cable?</h3>
The tension in the cable can be found as:
= 4 x mass x length x frequency
Solving for the frequency is:
= 1 / (0.800 / 4)
= 1 / 0.20
= 5.0 Hz
The tension is therefore:
= 4 x 0.20 x 4.00 x 5
= 80N
Find out more on tension at brainly.com/question/14336853
#SPJ4
Answer:
Before: 0 m/s
After: -4 m/s
Explanation:
Before: Since you and your beau started at rest, your beau initial velocity is 0 m/s.
After: Since we have to conserve momentum,
momentum before push = momentum after push.
The momentum before push = 0 (since you and your beau are at rest)
momentum after push = m₁v₁ + m₂v₂ were m₁ = your mass = 60 kg, v₁ = your velocity after push = 3 m/s, m₂ = beau's mass = 45 kg and v₂ = beau's velocity.
So, m₁v₁ + m₂v₂ = 0
m₁v₁ = -m₂v₂
v₂ = -m₁v₁/m₂ = -60 kg × 3 m/s ÷ 45 kg = -4 m/s
So beau moves with a velocity of 4 m/s in the opposite direction
Answer:
Any of those terms can be converted to either of the other terms, so either term is correct. People are accustomed to everyday temperatures in Fahrenheit. The ideal gas law specifies that
P V = N R T where T is in Kelvin which is Celsius + 273 deg.
Answer:
It moderates the temperature of coastal areas. The cool waters brought into warm areas temper the climate as well as the warm waters that enter a cool area there by moderating temperatures and climates.
Explanation:
One way that the world’s ocean affects weather and climate is by playing an important role in keeping our planet warm. The majority of radiation from the sun is absorbed by the ocean, particularly in tropical waters around the equator, where the ocean acts like a massive, heat-retaining solar panel. Land areas also absorb some sunlight, and the atmosphere helps to retain heat that would otherwise quickly radiate into space after sunset.
The ocean doesn't just store solar radiation; it also helps to distribute heat around the globe. When water molecules are heated, they exchange freely with the air in a process called evaporation. Ocean water is constantly evaporating, increasing the temperature and humidity of the surrounding air to form rain and storms that are then carried by trade winds. In fact, almost all rain that falls on land starts off in the ocean. The tropics are particularly rainy because heat absorption, and thus ocean evaporation, is highest in this area.
Outside of Earth’s equatorial areas, weather patterns are driven largely by ocean currents. Currents are movements of ocean water in a continuous flow, created largely by surface winds but also partly by temperature and salinity gradients, Earth’s rotation, and tides. Major current systems typically flow clockwise in the northern hemisphere and counterclockwise in the southern hemisphere, in circular patterns that often trace the coastlines.
Ocean currents act much like a conveyor belt, transporting warm water and precipitation from the equator toward the poles and cold water from the poles back to the tropics. Thus, ocean currents regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth’s surface. Without currents in the ocean, regional temperatures would be more extreme—super hot at the equator and frigid toward the poles—and much less of Earth’s land would be habitable.