1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
3 years ago
11

A city engineer knows that she will need $25 million in 3 years to replace toll booths on a toll road in the city. Traffic on th

e road is estimated to be 20 million vehicles per year. How much per vehicle should the toll be to cover the cost of the toll booth replacement project? Interest is 10%.
Engineering
1 answer:
Andreas93 [3]3 years ago
4 0

Answer:

$1.38

Explanation:

She will spend $25 million in 3 years at 10% interest is a case of Future Value of Annuity.

Therefore,

FV = A*((1+r)^n-1)/r

Where A = 25,000,000

r=10%=0.1

n=3

FV= 25000000*((1+0.1)^3-1)/0.1

FV=25000000*(1.331-1)/0.1

FV=25000000*(0.331/0.1)

FV=25000000*3.31

FV=$82,750,000

So it is estimated that 20million cars passes through the toll per year

Therefore,

Toll per vehicle per year = 82750000/2000000

=$4.14

Toll for the duration of the project

=4.14/3 =$1.38

You might be interested in
Which of the following statements about glycogen metabolism is FALSE?
Ratling [72]

Answer:

Glycogen is the primary energy source for muscle and liver cells.

Explanation:

Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.

Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.

3 0
4 years ago
What is the difference between a stepped and a non-stepped ECT circuit?<br> ​
galina1969 [7]

Answer:

A stepped circuit is designed in the engine coolant temperature (ECT) sensor within a powertrain control module (PCM) to increase the sensor's accuracy. A simple non-stepped ECT sensor circuit has a specific resistance which increases or decreases according to the changes in engine coolant temperature.

Explanation:

5 0
3 years ago
Gina is about to use a fire extinguisher on a small fire. What factor determines the type of extinguisher she should use
amm1812

There’s 5 different types of fire extinguishers that you can differentiate by their color codes.

Red - Water based

Creme - Foam based

Blue - Powder based

Black - CO2 or carbon dioxide based

Yellow - Wet chemical based

What would determine the type of fire extinguisher used would be the class of fire it is.

Class A - Combustible materials ( i.e. paper, wood) Extinguishers to use - Red, Creme, Blue, and Yellow. (Do not use Black)

Class B - Flammable liquids ( i.e. paint, petrol, alcohol) Extinguishers to use - Creme, Blue, and Black. (Do not use Red or Yellow)

Class C - Flammable gases ( i.e. butane, methane) Extinguishers to use - Blue (Do not use Red, Creme, Black or Yellow)

Class D - Flammable metals ( i.e. lithium, potassium) Extinguishers to use - Blue (Do not use Red, Creme, Black or Yellow)

Class F - Deep fat fryers ( i.e. chip pans) Extinguishers to use - Yellow (Do not use Red, Creme, Blue or Black)

Electrical - any sort of electrical equipment

( i.e. computers, generators) Extinguishers to use - Blue and Black (Do not use Red, Creme or Yellow)

8 0
3 years ago
Read 2 more answers
The following electrical characteristics have been determined for both intrinsic and p-type extrinsic gallium antimonide (GaSb)
xxTIMURxx [149]

Answer:

0.5m^2/Vs and 0.14m^2/Vs

Explanation:

To calculate the mobility of electron and mobility of hole for gallium antimonide we have,

\sigma = n|e|\mu_e+p|e|\mu_h (S)

Where

e= charge of electron

n= number of electrons

p= number of holes

\mu_e= mobility of electron

\mu_h=mobility of holes

\sigma = electrical conductivity

Making the substitution in (S)

Mobility of electron

8.9*10^4=(8.7*10^{23}*(-1.602*10^{-19})*\mu_e)+(8.7*10^{23}*(-1.602*10^{-19})*\mu_h)

0.639=\mu_e+\mu_h

Mobility of hole in (S)

2.3*10^5 = (7.6*10^{22}*(-1.602*10^{-19})*\mu_e)+(1*10^{25}*(-1.602*10^{-19}*\mu_h))

0.1436 = 7.6*10^{-3}\mu_e+\mu_h

Then, solving the equation:

0.639=\mu_e+\mu_h (1)

0.1436 = 7.6*10^{-3}\mu_e+\mu_h (2)

We have,

Mobility of electron \mu_e = 0.5m^2/V.s

Mobility of hole is \mu_h = 0.14m^2/V.s

6 0
3 years ago
In an axial flow compressor air enters the compressor at stagnation conditions of 1 bar and 290 K. Air enters with an absolute v
Aloiza [94]

Answer:

i) r_t = 0.5101 m

ii) m' = 106.73 kg/s

iii) R_s = 1.26

P = 2359.8 kW

iv) β2 = 55.63°

Explanation:

We are given;

Stagnation pressure; T_01 = 290 K

Inlet velocity; C1 = 145 m/s

Cp for air = 1005 kJ/(kg·K)

Mach number; M = 0.96

Ratio of specific heats; γ = 1.4

Stagnation pressure; P_01 = 1 bar

rotational speed; N = 5500 rpm

Work done factor; τ = 0.92

Isentropic effjciency; η = 0.9

Stagnation temperature rise; ΔT_s = 22 K

i) Formula for Stagnation temperature is given as;

T_01 = T1 + C1/(2Cp)

Thus,making T1 the subject, we havw;

T1 = T_01 - C1/(2Cp)

Plugging in the relevant values, we have;

T1 = 290 - (145/(2 × 1005))

T1 = 289.93 K

Formula for the mach number relative to the tip is given by;

M = V1/√(γRT1)

Where V1 is relative velocity at the tip and R is a gas constant with a value of 287 J/Kg.K

Thus;

V1 = M√(γRT1)

V1 = 0.96√(1.4 × 287 × 289.93)

V1 = 0.96 × 341.312

V1 = 327.66 m/s

Now, tip speed is gotten from the velocity triangle in the image attached by the formula;

U_t = √(V1² - C1²)

U_t = √(327.66² - 145²)

U_t = √86336.0756

U_t = 293.83 m/s

Now relationship between tip speed and tip radius is given by;

U_t = (2πN/60)r_t

Where r_t is tip radius.

Thus;

r_t = (60 × U_t)/(2πN)

r_t = (60 × 293.83)/(2π × 5500)

r_t = 0.5101 m

ii) Now mean radius from derivations is; r_m = 1.5h

While relationship between mean radius and tip radius is;

r_m = r_t - h/2

Thus;

1.5h = 0.5101 - 0.5h

1.5h + 0.5h = 0.5101

2h = 0.5101

h = 0.5101/2

h = 0.2551

So, r_m = 1.5 × 0.2551

r_m = 0.3827 m

Formula for the area is;

A = 2πr_m × h

A = 2π × 0.3827 × 0.2551

A = 0.6134 m²

Isentropic relationship between pressure and temperature gives;

P1 = P_01(T1/T_01)^(γ/(γ - 1))

P1 = 1(289.93/290)^(1.4/(1.4 - 1))

P1 = 0.9992 bar = 0.9992 × 10^(5) N/m²

Formula for density is;

ρ1 = P1/(RT1)

ρ1 = 0.9992 × 10^(5)/(287 × 289.93)

ρ1 = 1.2 kg/m³

Mass flow rate at compressor inlet is;

m' = ρ1 × A × C1

m' = 1.2 × 0.6134 × 145

m' = 106.73 kg/s

iii) stagnation pressure ratio is given as;

R_s = (1 + ηΔT_s/T_01)^(γ/(γ - 1))

R_s = (1 + (0.9 × 22/290))^(1.4/(1.4 - 1))

R_s = 1.26

Work is;

W = C_p × ΔT_s

W = 1005 × 22

W = 22110 J/Kg

Power is;

P = W × m'

P = 22110 × 106.73

P = 2359800.3 W

P = 2359.8 kW

iv) We want to find the rotor angle.

now;

Tan β1 = U_t/C1

tan β1 = 293.83/145

tan β1 = 2.0264

β1 = tan^(-1) 2.0264

β1 = 63.73°

Formula for Stagnation pressure rise is given by;

ΔT_s = (τ•U_t•C1/C_p) × tan(β1 - β2)

Plugging in the relevant values;

22 = (0.92 × 293.83 × 145/1005) × (tan 63.73 - tan β2)

(tan 63.73 - tan β2) = 0.5641

2.0264 - 0.5641 = tan β2

tan β2 = 1.4623

β2 = tan^(-1) 1.4623

β2 = 55.63°

6 0
3 years ago
Other questions:
  • A refrigerated space is maintained at -15℃, and cooling water is available at 30℃, the refrigerant is ammonia. The refrigeration
    5·1 answer
  • What is the difference between a refrigeration cycle and a heat pump cycle?
    9·1 answer
  • 3
    13·1 answer
  • The hoist of a crane consists of a 10 kW electric motor running at 1440 rpm drivine 300 mm diameter drunn through a 60:1 gear re
    13·1 answer
  • Design an op amp circuit to average the input of six sensors used to measure temperature in restaurant griddles for a large fast
    7·1 answer
  • Chad is working on a design that uses the pressure of steam to control a valve in order to increase water pressure in showers. W
    10·1 answer
  • In a crash test, a 2,500 kg car hits a concrete barrier at 1.3 m/s2.
    13·2 answers
  • Match the scenario to the related government program.
    8·1 answer
  • Pacing pieces of information into groups to remember them better is called
    11·1 answer
  • How do I find v0 using Kirchhoff's laws and Ohm's law? The answer is 25V but I'm confused about how to get that.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!