1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kipiarov [429]
3 years ago
6

The center of a moon of mass m is a distance D from the center of a planet of mass M. At some distance x from the center of the

planet, along a line connecting the centers of planet and moon, the net force on an object will be zero.
Physics
1 answer:
Evgen [1.6K]3 years ago
3 0

Question Continuation

Derive an expression for x in terms of m, M, and D. b) If the net force is zero a distance ⅔D from the planet, what is the ratio R of the mass of the planet to the mass of the moon, M/m?

Answer:

a. x = (D√M/m)/(√M/m + 1)

b. The ratio R of the mass of the planet to the mass of the moon=4:1

Explanation:

Given

m = Mass of moon

M = Mass of the planet

D = Distance between the centre of the planet and the moon

Net force = 0

Let Y be a point at distance x from the planet

Let mo = mass at point Y

a.

Derive an expression for x in terms of m, M and D.

Formula for Gravitational Force is

F = Gm1m2/r²

Y = D - x

Force on rest mass due to mass M (FM) =Force applied on rest mass due to m (Fm)

FM = G * mo * M/x²

Fm = G * mo * m/Y²

Fm = G * mo * m/(D - x)²

FM = Fm = 0 ------ from the question

So,

G * mo * M/x² = G * mo * m/(D - x)² ----- divide both sides by G * mo

M/x² = m/(D - x)² --- Cross Multiply

M * (D - x)² = m * x²

M/m = x²/(D - x)² ---_ Find square roots of both sides

√(M/m) = x/(D - x) ----- Multiply both sides by (D - x)

(D - x)√(M/m) = x

D√(M/m) - x√(M/m) = x

D√(M/m) = x√(M/m) + x

D√(M/m) = x(√(M/m) + 1) ------- Divide both sides by √M/m + 1

x = (D√M/m)/(√M/m + 1)

b. Here x = ⅔D

FM = G * mo * M/x²

Fm = G * mo * m/(D - x)²

FM = Fm

G * mo * M/x² = G * mo * m/(D - x)² ----- divide both sides by G * mo

M/x² = m/(D - x)² --- (Substitute ⅔D for x)

M/(⅔D)² = m/(D - ⅔D)²

M/(4D/9) = m/(⅓D)²

9M/4D = m/(D/9)

9M/4D = 9m/D ---- Divide both side by 9/D

M/4 = m

M = 4m

M/m = 4

M:m = 4:1

So, the ratio R of the mass of the planet to the mass of the moon=4:1

You might be interested in
What kind of cord is this no links please
Ne4ueva [31]

Answer:

if i'm not mistaken that's either a plug in cord for a certain device, or what i am assuming to be a usb software cord.

Explanation:

8 0
2 years ago
Read 2 more answers
Explain different types of thermometer and their thermometry substance​
Rudiy27

Answer:

Explained below

Explanation:

1) Liquid in glass thermometer: This type of thermometer is used primarily to measure the temperatures from inspection of changes in volume of liquid.

Thermometry substance is mercury or alcohol

2) Gas thermometer: This type is used to measure temperature as a result of changes in gas pressure or volume.

Thermometry substance is Gas.

3) Resistance thermometer: This type is used to measure temperature due to changes in electric resistance.

Thermometry substance is Resistance wire.

4) Thermocouple thermometer: This type is used to measure the temperature due to changes in electrical potential difference occurring between two metal junctions.

Thermometry substance is two wires that are dissimilar.

5) Bimetallic thermometer: This is a type of thermometer that measures temperature by converting temperature into mechanical displacement by making use of Bimetallic strip.

Thermometry substance is two metals that are dissimilar.

3 0
3 years ago
Help<br> help <br> help<br> plssss
Flauer [41]

Answer:

sorry i don't no

i promise i will help you later

now i am also in trouble now

nobody helps me

4 0
2 years ago
Estimate the wavelength corresponding to maximum emission from each of the following surfaces: the sun, a tungsten filament at 2
igomit [66]

Answer

Applying Wein's displacement

\lamda_{max}\ T = 2898 \mu_mK

1) for sun T = 5800 K

      \lambda_{max} = \dfrac{2898}{5800}

      \lambda_{max} = 0.5 \mu_m

2) for tungsten T = 2500 K

      \lambda_{max} = \dfrac{2898}{2500}

      \lambda_{max} = 1.16 \mu_m

3) for heated metal T = 1500 K

      \lambda_{max} = \dfrac{2898}{1500}

      \lambda_{max} = 1.93 \mu_m

4) for human skin T = 305 K

      \lambda_{max} = \dfrac{2898}{305}

      \lambda_{max} = 9.50 \mu_m

5)  for cryogenically cooled metal T = 60 K

      \lambda_{max} = \dfrac{2898}{60}

      \lambda_{max} = 48.3 \mu_m

range of different spectrum

UV ----0.01-0.4

visible----0.4-0.7

infrared------0.7-100

for sun T = 5800

λ              0.01           0.4               0.7                 100

λT             58           2320            4060             5.8 x 10⁵

F                0             0.125             0.491                1

fractions

for UV = 0.125  

for visible = 0.441-0.125 = 0.366

for infrared = 1 -0.491 = 0.509  

8 0
3 years ago
A microwave oven operating at 1.22 × 108 nm is used to heat 165 mL of water (roughly the volume of a teacup) from 23.0°C to 100.
ANTONII [103]

<u>Answer:</u> The number of photons are 3.7\times 10^8

<u>Explanation:</u>

We are given:

Wavelength of microwave = 1.22\times 10^8nm=0.122m    (Conversion factor:  1m=10^9nm  )

  • To calculate the energy of one photon, we use Planck's equation, which is:

E=\frac{hc}{\lambda}

where,

h = Planck's constant = 6.625\times 10^{-34}J.s

c = speed of light = 3\times 10^8m/s

\lambda = wavelength = 0.122 m

Putting values in above equation, we get:

E=\frac{6.625\times 10^{-34}J.s\times 3\times 10^8m/s}{0.122m}\\\\E=1.63\times 10^{-24}J

Now, calculating the energy of the photon with 88.3 % efficiency, we get:

E=1.63\times 10^{-24}\times \frac{88.3}{100}=1.44\times 10^{-24}J

  • To calculate the mass of water, we use the equation:

Density=\frac{Mass}{Volume}

Density of water = 1 g/mL

Volume of water = 165 mL

Putting values in above equation, we get:

1g/mL=\frac{\text{Mass of water}}{165mL}\\\\\text{Mass of water}=165g

  • To calculate the amount of energy of photons to raise the temperature from 23°C to 100°C, we use the equation:

q=mc\Delta T

where,

m = mass of water = 165 g

c = specific heat capacity of water = 4.184 J/g.°C

\Delta T = change in temperature = T_2-T_1=100^oC-23^oC=77^oC

Putting values in above equation, we get:

q=165g\times 4.184J/g.^oC\times 77^oC\\\\q=53157.72J

This energy is the amount of energy for 'n' number of photons.

  • To calculate the number of photons, we divide the total energy by energy of one photon, we get:

n=\frac{q}{E}

q = 53127.72 J

E = 1.44\times 10^{-24}J

Putting values in above equation, we get:

n=\frac{53157.72J}{1.44\times 10^{-24}J}=3.7\times 10^{28}

Hence, the number of photons are 3.7\times 10^8

4 0
3 years ago
Other questions:
  • okay i was trying to see if yall know this okay a wave is a repeating disturbance of movement that transfers .........blank
    5·1 answer
  • Which type of bond has an electronegativity difference greater than 1.7? a. ionic c. nonpolar covalent b. metallic d. polar cova
    13·1 answer
  • One cubic foot of water can store 312btu. a home requires 100,000 what is the volume​
    8·1 answer
  • How many grams of water can be cooled from 42 ∘c to 20 ∘c by the evaporation of 51 g of water? (the heat of vaporization of wate
    5·1 answer
  • What is the claim evidence and reasoning, for the top one
    9·1 answer
  • The specific heat of water is 4.184 J g—1 K—1. A piece of iron (Fe) weighing 40 g is heated to 80EC and dropped into 100 g of wa
    13·1 answer
  • Si un vector tiene una dirección de 2300 a partir del eje x positivo, ¿Qué signos tendrán sus componentes x y y? Si la la razón
    15·1 answer
  • . What happens to the wasted energy in the kettle?
    14·1 answer
  • Work and Power Practice Calculations
    12·1 answer
  • If we rub two neutral objects​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!