<h2>
Answer: 10615 nm</h2>
Explanation:
This problem can be solved by the Wien's displacement law, which relates the wavelength
where the intensity of the radiation is maximum (also called peak wavelength) with the temperature
of the black body.
In other words:
<em>There is an inverse relationship between the wavelength at which the emission peak of a blackbody occurs and its temperature.</em>
Being this expresed as:
(1)
Where:
is in Kelvin (K)
is the <u>wavelength of the emission peak</u> in meters (m).
is the <u>Wien constant</u>, whose value is 
From this we can deduce that the higher the black body temperature, the shorter the maximum wavelength of emission will be.
Now, let's apply equation (1), finding
:
(2)
Finally:
This is the peak wavelength for radiation from ice at 273 K, and corresponds to the<u> infrared.</u>
Explanation:
I am not expect I am ambitious
Answer:
150000000

49050000 N/C
Explanation:
q = Charge = 24 pC
m = Mass of honeybee = 0.12 g
E = Electric field = 100 N/C
g = Acceleration due to gravity = 9.81 m/s²

Number electrons is

The number of electrons added or removed was 150000000
Force is given by

The ratio is

The ratio is 
Balancing the forces we get

The electric field required is 49050000 N/C
What term do you mean? like what he did to the dog is he stopped the dog
Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.