1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
densk [106]
3 years ago
7

A uniform rod of mass M and length L can pivot freely at one end. Initially, the rod is oriented vertically above the pivot, in

unstable equilibrium, and is released from rest. When the rod is again vertical, below the pivot, what is the speed of its center of mass (in terms of g and L)? The rotational inertia about the end of a uniform rod is 1 3 M L2 .
Physics
1 answer:
Leya [2.2K]3 years ago
4 0

Answer:

The speed of its center of mass =\sqrt{\frac{3}{2}gL}

Explanation:

Consider the potential energy at the level of center of mass of rod below the pivot=0

Mass of uniform rod=M

Length of rod=L

The rotational inertia about the end of a uniform rod=\frac{1}{3}ML^2

Kinetic energy at the level of center of mass of rod below the pivot=\frac{1}{2}I\omega^2

Kinetic energy at the level of center of mass of rod above the pivot=0

Potential energy at the level of center of mass of rod above the pivot=mgh

We have to find the center of mass ( in terms of g and L).

According to conservation of law of energy

Initial P.E+Initial K.E=Final P.E+Final K.E

mgh+0=0+\frac{1}{2} I\omega^2

Where K.E=\frac{1}{2} I\omega^2

I=Moment of inertia

\omega=Angular velocity

Substitute the values then we get

MgL=\frac{1}{2}\times \frac{1}{3}ML^2\omega^2

\omega^2=\frac{6g}{L}

Now, we know that \omega=\frac{v}{r}, r=\frac{L}{2}

Substitute the values then we get

\frac{v^2}{(\frac{L}{2})^2}=\frac{6g}{L}

\frac{v^24}{L^2}=\frac{6g}{L}

v^2=\frac{6g\times L^2}{4L}

v^2=\frac{3gL}{2}

v=\sqrt{\frac{3}{2}gL}

Hence, the speed of its center of mass =\sqrt{\frac{3}{2}gL}

You might be interested in
If a train is 100 kilometers away, how much sooner would you hear the train coming by listening to the rails (iron) as opposed t
Whitepunk [10]
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)

Distance traveled is
d = 100 km = 10⁵ m

Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s

Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s

The difference in time is
302.12 - 19.49 = 282.63 s

Answer:  283 s (nearest second)



6 0
2 years ago
Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, t
stellarik [79]

Answer:

0.243 m/s

Explanation:

From law of conservation of motion,

mu+m'u' = V(m+m')................. Equation 1

Where m = mass of the first car, m' = mass of the second car, initial velocity of the first car, u' = initial velocity of the second car, V = Final velocity of both cars.

make V the subject of the equation

V = (mu+m'u')/(m+m')................. Equation 2

Given: m = 260000 kg, u = 0.32 m/s, m' = 52500 kg, u' = -0.14 m/s

Substitute into equation 2

V = (260000×0.32+52500×(-0.14))/(260000+52500)

V = (83200-7350)/312500

V = 75850/312500

V = 0.243 m/s

8 0
3 years ago
Identify the conditions for an elastic collision in a closed system. Check all that apply.
s344n2d4d5 [400]

Answer:

In an elastic collision:

  • There is no external net force acting. Thus, Momentum before and after collision is equal. Momentum remains conserved.
  • Total energy always remains conserved as energy cannot be created nor destroyed. It can change from one form to another.
  • There is no lost due to friction in elastic collision. So the kinetic energy is also conserved.
  • Velocities may change after collision. If the masses are equal, the velocities interchange.

When one object is stationary:

Final velocity of object 1:

v₁ = (m₁ - m₂)u₁/(m₁ +m₂)

Final velocity of object 2:

v₂ = (2 m₁ u₁)/(m₁+m₂) =

  • Objects do not stick together in elastic collision. They stick together in inelastic collision.
  • One object may be stationary before the elastic collision.

Thus, conditions for an elastic collision:

  • Energy is conserved.
  • Velocities may change.
  • Momentum is conserved.
  • Kinetic energy is conserved.
  • One object may be stationary before the elastic collision.
7 0
2 years ago
Read 2 more answers
Which vector goes from (-1,-2) to (3, 4)?<br><br> A. d<br> B. c<br> C. b<br> D. a
kogti [31]

vector b is the answer...............

5 0
3 years ago
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 50.9 J and a maximum d
Llana [10]

(a) 2446 N/m

When the spring is at its maximum displacement, the elastic potential energy of the system is equal to the total mechanical energy:

E=U=\frac{1}{2}kA^2

where

U is the elastic potential energy

k is the spring constant

A is the maximum displacement (the amplitude)

Here we have

U = E = 50.9 J

A = 0.204 m

Substituting and solving the formula for k,

k=\frac{2E}{A^2}=\frac{2(50.9)}{(0.204)^2}=2446 N/m

(b) 50.9 J

The total mechanical energy of the system at any time during the motion is given by:

E = K + U

where

K is the kinetic energy

U is the elastic potential energy

We know that the total mechanical energy is constant: E = 50.9 J

We also know that at the equilibrium point, the elastic potential energy is zero:

U=\frac{1}{2}kx^2=0 because x (the displacement) is zero

Therefore the kinetic energy at the equilibrium point is simply equal to the total mechanical energy:

K=E=50.9 J

(c) 8.55 kg

The maximum speed of the block is v = 3.45 m/s, and it occurs when the kinetic energy is maximum, so when

K = 50.9 J (at the equilibrium position)

Kinetic energy can be written as

K=\frac{1}{2}mv^2

where m is the mass

Solving the equation for m, we find the mass:

m=\frac{2K}{v^2}=\frac{2(50.9)}{(3.45)^2}=8.55 kg

(d) 2.14 m/s

When the displacement is

x = 0.160 m

The elastic potential energy is

U=\frac{1}{2}kx^2=\frac{1}{2}(2446)(0.160)^2=31.3 J

So the kinetic energy is

K=E-U=50.9 J-31.3 J=19.6 J

And so we can find the speed through the formula of the kinetic energy:

K=\frac{1}{2}mv^2 \rightarrow v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(19.6)}{8.55}}=2.14 m/s

(e) 19.6 J

The elastic potential energy when the displacement is x = 0.160 m is given by

U=\frac{1}{2}kx^2=\frac{1}{2}(2446)(0.160)^2=31.3 J

And since the total mechanical energy E is constant:

E = 50.9 J

the kinetic energy of the block at this point is

K=E-U=50.9 J-31.3 J=19.6 J

(f) 31.3 J

The elastic potential energy stored in the spring at any time is

U=\frac{1}{2}kx^2

where

k = 2446 N/m is the spring constant

x is the displacement

Substituting

x = 0.160 m

we find the elastic potential energy:

U=\frac{1}{2}kx^2=\frac{1}{2}(2446)(0.160)^2=31.3 J

(g) x = 0

The postion at that instant is x = 0, since it is given that at that instant  the system passes the equilibrium position, which is zero.

4 0
2 years ago
Other questions:
  • Which situation is contrary to Newton’s first law of motion? An object at rest begins to move when an external force is applied.
    14·2 answers
  • What is most likely to be found in both a spinach cell and a muscle cell
    14·1 answer
  • The energy associated with the random motion of molecules or atoms within a substance is
    8·1 answer
  • A heating element on an electric range operating at 200. v has a resistance of 32.0 ohms. the current drawn by the element is
    5·1 answer
  • How are gravity and air resistance the same?
    13·1 answer
  • Which of the following is the brightness of a star as we see if from Earth?
    6·1 answer
  • Which of the following is an example of speed?
    6·1 answer
  • The magnification produced by a plane mirror is +1. what does this mean?
    12·1 answer
  • Which celestial objects come in direct contact with earth
    12·1 answer
  • compare and contrast the excited state and the ground state of electrons. please use proper grammar and mechanics.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!