Answer:
infrared part of the spectrum
Explanation:
brown dwarfs are relatively cool and have temperatures of about 2000 K emitting their light in the infrared and practically none in the ultraviolet part of the spectrum.
This is happened because "the air" above "moves faster" and "the pressure" is "lower"
.
Option: 1
<u>Explanation</u>:
Air movement take place from the region where air pressure is more than the region where the pressure is low. When we "blow" air above the "paper strip" paper rises because "low pressure" is created above the strip as high speed winds always travel with reduced air pressure. Hence due to higher air pressure below the strip, it is pushed upwards. This difference in pressure results into fast air moves. This happen because "speed" of the wind depends on "the difference between the pressures" of the air in the two regions.
In quantum mechanics, a central concept is that both matter and <u>energy</u> are alternate forms of the same entity and therefore both exhibit dual characteristics of particles and of <u>waves</u>.
Matter can be defined as anything that has mass and is able to occupy space.
Thus, any physical object or substance that is found on Earth is typically composed of matter.
Similarly, energy is highly affected by the mass of a any physical object or substance just like matter,
Hence, both energy and matter are known to be made up of atoms and as a result of this fact, exhibit dual characteristics of particles and of waves.
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In conclusion, this central concept makes it easier for us to better understand the behavior of tiny particles such as electrons.
Find more information: brainly.com/question/17203857
"1 watt" means 1 joule of energy per second.
75 W means 75 joules/sec .
Energy = (75 Joule/sec) x (12 min) x (60 sec/min)
Energy = (75 x 12 x 60) (Joule-<em>min-sec</em> / <em>sec-min</em>)
<em>Energy = 54,000 Joules</em>