Explanation:
The given data is as follows.

Voltage = 2.50 V
Hence, calculate the equivalence capacitor as follows.


= 
C = 
Now, we will calculate the charge across each capacitance as follows.
Q = CV
= 
=
=
Thus, we can conclude that
is the charge stored on each given capacitor.
Answer:
Ideal mechanical advantage of the lever is 3.
Explanation:
Given that,
The distance between the levers input force and the fulcrum is 8 cm, 
The distance between the fulcrum and the output force is 24 cm, 
To find,
The ideal mechanical advantage of the lever.
Solution,
The ratio of the distance between the fulcrum and the output force to the distance between the levers input force and the fulcrum is called the ideal mechanical advantage of the lever. It is given by :


m = 3
So, the ideal mechanical advantage of the lever is 3.
Answer:
volume of substance of weight of mercury is 13593 kilograms
Answer:
The distance from the pivot point that the small child will sit in order to maintain the balance is 1.8 m
Explanation:
Given;
mass of the bigger child, M = 30 kg
mass of the smaller child, m = 20 kg
distance between the two children, d = 3 m
This information can be represented diagrammatically;
3m
|<------------------------------------------------>|
----------------------------------------------------------------------------
↓ x Δ 3-x ↓
20kg 30kg
x is the distance from the pivot point that the small child will sit in order to maintain the balance
Take moment about the pivot;
Clockwise moment = anticlockwise moment
30(3-x) = 20x
90 -30x = 20x
90 = 20x + 30x
90 = 50x
x = 90 / 50
x = 1.8 m
Therefore, the distance from the pivot point that the small child will sit in order to maintain the balance is 1.8 m