1) <span>Step 5 A tree absorbs the carbon from the atmosphere into its leaves for photosynthesis. Inorganic carbon is turned into organic.
2) </span><span>Step 1 A caterpillar gets the carbon by eating the tree's leaves. Caterpillar use carbon for energy.
3) </span><span>Step 3 A bird gets the carbon by eating the caterpillar. Organic carbon shifts from one animal to another
4) </span><span>Step 4 The bird flies into a building and dies instantly. It falls to the ground.
5) </span><span>Step 2 The bird decomposes and the carbon is added to the atmosphere. Organic carbon turns into inorganic.
</span>
A, because the number of valence shell electrons (outer shell electrons) tells us how much the element or compound wants to bond or give up electrons. Most compounds and elements want to have eight valence ectrons in it's outer ring. So if an atom is far away from having eight, it will want to react more often.
<u>Answer:</u> The value of
for the reaction at 550.3 K is 247.83
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The chemical equation for the production of methanol follows:

The expression of
for above equation follows:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
We are given:
![[CH_3OH]=0.0401mol/L](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D0.0401mol%2FL)
![[CO]=0.02722mol/L](https://tex.z-dn.net/?f=%5BCO%5D%3D0.02722mol%2FL)
![[H_2]=0.07710mol/L](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.07710mol%2FL)
Putting values in above equation, we get:

Hence, the value of
for the reaction at 550.3 K is 247.83