The compound sodium carbonate is a strong electrolyte because it completely dissociates when placed in water into its component ions. The equation of the reaction can be expressed as:
The dissociation leads to the formation of sodium and carbonate ions with the latter held together by its internal covalent bond.
This is unlike weak electrolytes that do not dissociate completely in water or aqueous solutions. Only a small fraction of the solute exists as ions in the solution.
More on strong and weak electrolytes can be found here: brainly.com/question/3410548
Answer:
The type of liquid in the tub (salt water or vinegar)
Explanation:
<em>The manipulated independent variable in Anita's experiment is </em><em>the type of liquid in the tub. </em>
The independent variable is the controlled or manipulated variable in the course of an experiment. It can also be referred to as the 'cause' variable which has the capacity to produce 'effects' on another variable - the dependent variable.
In this case, the type of liquid the tub is filled (salt water or vinegar) will hypothetically affect the rusting period of the steel. Hence, the dependent variable is the type of liquid the tub is filled while the dependent variable would be the time it takes for the steel to get rusted.
Answer:
2H⁺(aq) + Sr(OH)₂(s) ⟶ Sr²⁺(aq) + 2H₂O(ℓ)
Explanation:
You aren't dumb. You just need more time to learn the concepts.
There are three steps you must follow. You must write the:
- Molecular equation
- Ionic equation
- Net ionic equation
1. Molecular equation
2HBr + Sr(OH)₂ ⟶ SrBr₂ + 2H₂O
To predict the states of the substances, we must remember some solubility rules:
- HBr is a strong acid. It dissociates completely in water.
- Most hydroxides are only slightly soluble. Unless the solution is quite dilute, I would write their states in water as "(s)", i.e., a suspension of the solid in water.
- Salts containing Br⁻ are generally soluble.
Acids and bases react to give salts and water.
Thus, the molecular equation is
2HBr(aq) + Sr(OH)₂(s) ⟶ SrBr₂(aq) + 2H₂O(ℓ)
B. Ionic equation
You write all the soluble substances as ions.
2H⁺(aq)+ 2Br⁻(aq) + Sr(OH)₂(s) ⟶ Sr²⁺(aq) + 2Br⁻(aq) + 2H₂O(ℓ)
C. Net ionic equation
To get the net ionic equation, you cancel the ions that appear on each side of the ionic equation.
2H⁺(aq) + <u>2Br⁻(aq)</u> + Sr(OH)₂(s) ⟶ Sr²⁺(aq) + <u>2Br⁻(aq)</u> + 2H₂O(ℓ)
The net ionic equation is
2H⁺(aq) + Sr(OH)₂(s) ⟶ Sr²⁺(aq) + 2H₂O(ℓ)
Answer:
0.087 moles of water
Explanation:
Given data:
Number of molecules of water = 5.24×10²² molecules
Number of moles of water = ?
Solution:
Avogadro number:
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules of water
5.24×10²² molecules × 1 mol / 6.022 × 10²³ molecules
0.87×10⁻¹ mol
0.087 mol