Answer:
Radius of curvature of the mirror = 250 cm
Explanation:
Given:
Object distance from mirror = 250 cm (u=-250)
Object distance appears in mirror = 250 cm (v=-250)
Find:
Radius of curvature of the mirror
Computation:
Using mirror formula
1/f = 1/v + 1/u
1/f = 1/(-250) + 1/(-250)
f = (-250/2)
f = -125 cm or 125 cm
Radius of curvature of the mirror = 2(f)
Radius of curvature of the mirror = 2(125)
Radius of curvature of the mirror = 250 cm
Answer:
the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
K = E - Ф
Explanation:
The photoelectric effect is the emission of electrons from the surface of a metal.
This was correctly explained by Einstein, in his explanation the energy of the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
E = hf
E = K + Ф
K = E - Ф
The energy of the photons is given by the Planck relation E = hf and according to Einstein the number of joints must be added
E = n hf
Therefore, depending on the value of this energy, the emitted electrons can have energy from zero onwards.
Answer:
Explanation:
<em>Assuming the triangle is a right triangle,</em>
the magnitude of R can be found using the Pythagorean theorem,
R = sqrt(9.7^2+6^2) = 11.41 m
The angle can be found by arctangent, which is
angle = atan(9.7/6) = 58.26 degrees.
Sure. Body can move with uniform speed, and having zero velocity, when velocity becomes zero due to change in direction over time t.
For Example. - An Object is moving with uniform speed in a circular path, then after one complete revolution, it's velocity is zero, but speed still remains uniform
Hope this helps!