Answer:
If we use the equation for the transformation of velocities for moving frames:
v' = (v - u) / (1 - u * v / c^2) where we measure the speed of v' approaching from the left where v is in a frame moving at -u towards v'
v' = (.6 c - (-.6 c)) / (1 - (-.6 c) * .6 c / c^2) = 1.2 c / (1 + .6 * .6)
or v' = 1.2 c / (1 + .36) = .88 c
v is approaching from the left at .6 c in the reference frame and the other frame approaches from the right at -.6 c with speed u (-.6 c) and we measure the speed of v as seen in the frame moving to the left
Its larger and if u where wondering to positive ions are smaller
Answer:
it is sublimation because There are three ways heat is transferred into and through the atmosphere:
radiation.
conduction.
convection.
Explanation:
please mark me as brainliest as you wrote over there
Centripetal force is equal to (mv^2)/r
The way I use to answer these question is to set every variable to 1
m=1
v=1
r=1
so centripetal force =1
then change the variable we're looking at
and since we're find when it's half we could either change it to 1/2 or 2, but 2 is easier to use
m=1
v=2
r=1
((1)×(2)^2)/1=4
So the velocity in the 1st part is half the velocity in the 2nd part and the centripetal force is 4× less
The answer is the centripetal force is 1/4 as big the second time around
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.