Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m
A mechanical wave<span> requires an initial energy input. Once this initial energy is added, the </span>wave travels through<span> the medium until all its energy is transferred.</span>
Answer:

Explanation:
At some distance from the Earth the force of attraction due to moon is balanced by the force due to Moon
so we will have

now we have


so we will have

Now by energy conservation



Answer:
b
Explanation:
this is because inoder. for combustion or burning to take place oxygen must be available