Answer:
h=18.05 cm
Explanation:
Given that
m= 25 kg
K= 1300 N/m
x=26.4 cm
θ= 19.5 ∘
When the block just leave the spring then the speed of block = v m/s
From energy conservation



By putting the values


v=1.9 m/s
When block reach at the maximum height(h) position then the final speed of the block will be zero.
We know that

By putting the values

h=0.1805 m
h=18.05 cm
Answer:
v=v0 - gt
Explanation:
The equation for velocity is
v=v0 - gt
where v0=14m/s, g=10m/s^2.
in 1 second:
v=14-10=4m/s
it is positive so direction is upwards
in 2 seconds:
v=14-20=-6m/s
it is negative so direction is downwards
The sound wave will have traveled 2565 m farther in water than in air.
Answer:
Explanation:
It is known that distance covered by any object is directly proportional to the velocity of the object and the time taken to cover that distance.
Distance = Velocity × Time.
So if time is kept constant, then the distance covered by a wave can vary depending on the velocity of the wave.
As we can see in the present case, the velocity of sound wave in air is 343 m/s. So in 2.25 s, the sound wave will be able to cover the distance as shown below.
Distance = 343 × 2.25 =771.75 m
And for the sound wave travelling in fresh water, the velocity is given as 1483 m/s. So in a time interval of 2.25 s, the distance can be determined as the product of velocity and time.
Distance = 1483×2.25=3337 m.
Since, the velocity of sound wave travelling in fresh water is greater than the sound wave travelling in air, the distance traveled by sound wave in fresh water will be greater.
Difference in distance covered in water and air = 3337-772 m = 2565 m
So the sound wave will have traveled 2565 m farther in water than in air.
Answer:
Original length = 2.97 m
Explanation:
Let the original length of the pendulum be 'L' m
Given:
Acceleration due to gravity (g) = 9.8 m/s²
Original time period of the pendulum (T) = 3.45 s
Now, the length is shortened by 1.0 m. So, the new length is 1 m less than the original length.
New length of the pendulum is, 
New time period of the pendulum is, 
We know that, the time period of a simple pendulum of length 'L' is given as:
-------------- (1)
So, for the new length, the time period is given as:
------------ (2)
Squaring both the equations and then dividing them, we get:

Now, plug in the given values and calculate 'L'. This gives,

Therefore, the original length of the simple pendulum is 2.97 m
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + (13 x 2)
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]