It would be Thermal Radiation
Answer:
A. 1.64 J
Explanation:
First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

where
n is the number of moles
m = 1.4 mg = 0.0014 g is the mass of mercury
Mm = 200.6 g/mol is the molar mass of mercury
Substituting, we find

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

where
n is the number of moles
is the Avogadro number
Substituting,
atoms
The energy emitted by each atom (the energy of one photon) is

where
h is the Planck constant
c is the speed of light
is the wavelength
Substituting,

And so, the total energy emitted by the sample is

Answer:
v’= 9.74 m / s
Explanation:
The Doppler effect is due to the relative movement of the sound source and the receiver of the sound, in this case we must perform the exercise in two steps, the first to find the frequency that the bat hears and then the frequency that the audience hears that also It is sitting.
Frequency shift heard by the murciela, in case the source is still and the observer (bat) moves closer
f₁ ’= f₀ (v + v₀)/v
Frequency shift emitted by the speaker in the bat, in this case the source is moving away from the observer (public sitting) that is at rest
f₂’= f₁’ v/(v - vs)
Note that in this case the bat is observant in one case and emitter in the other, called its velocity v’
v’= vo = vs
Let's replace
f₂’= f₀ (v + v’)/v v/(v -v ’)
f₂’= f₀ (v + v’) / (v -v ’)
(v –v’ ) f₂’ / f₀ = v + v ’
v’ (1+ f₂’ /f₀) = v (f₂’/fo - 1)
v’ (1 + 1.059) = 340 (1.059 - 1)
v’= 20.06 / 2.059
v’= 9.74 m / s
The Sun is going down, and most of the land is dark, still we can see silhouettes and outlines of objects because some light is still scattered in the atmosphere. I hope this helps you.
Answer:
<h2>2.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>2.2 m/s²</h3>
Hope this helps you