Answer:
γ = 0.06563 N / m
9.78% difference
Explanation:
Solution:-
- Surface tension is the ability of any fluid to resist any external force which causes a decreases in surface area of the impact area due to inward compressive forces. These compressive forces occur due to cohesive nature of the fluid molecules.
- Mathematically, surface tension ( γ ) is defined as the force felt per unit length by the fluid.
γ = F / L
Where,
F: Force imparted
L: The length over which force is felt
- We are given the mass ( M ) of ( n = 100 ) water droplets to e 3.78 g. The mass of a single droplet ( m ) can be evaluated as follows:
m = M / n
m = 3.78 / 100
m = 0.0378 g
- The force ( F ) imparted by a single drop of water from the burette can be determined from the force balance on a single droplet. Assuming the distance over which the drop falls is negligible and resistive forces are negligible. Then the only force acting on the droplet is due to gravity:
F = m*g
F = 0.0378*9.81*10^-3
F = 0.000370818 N
- The length over which the force is felt can be magnified into a circular area with diameter equal to that of a single droplet ( d ). The circumferential length ( L ) of the droplet would be as follows:
L = π*d
L = π*( 0.0018 )
L = 0.00565 m
- Then the surface tension would be:
γ = F / L
γ = 0.000370818 / 0.00565
γ = 0.06563 N / m
- The tabulated value of water's surface tension is given as follows:
γa = 0.07275 N/m
- We will determine the percentage difference between the value evaluated and tabulated value as follows:

- The %difference between is within the allowable practical limits of 10%. Hence, the evaluated value ( γ = 0.06563 N / m ) can be accepted with 9.78% error.
Answer:the Forces cancel out each other
Explanation:the forces cancel out each other
The quantum mechanical model describes the allowed energies an electron can have. It also describes how likely it is to find the electrons in various locations around an atom's nucleus.
Answer:
Part a)

Part b)
t = 12 s
Explanation:
Part a)
Tension in the rope at a distance x from the lower end is given as

so the speed of the wave at that position is given as

here we know that

now we have


Part b)
time taken by the wave to reach the top is given as




The heat lost by the water will be equivalent to the energy gained by the alcohol. Thus:
maCaΔT = -mwCwΔT
400 x 2.64 x (T - 10) = 400 x 4.186 x (88 - T)
T = 57.8 °C