Answer:
807.88N/m
Explanation:
<em>The question has some missing details in it, nevertheless, based on the given data we want to find the spring constant K</em>
Step one
given data
Unstretched length = 33.5 cm
Final length of the spring = 42.0 cm
Δx= 42-33.5
Δx=8.5cm to m= 0.085m
mass m= 7kg
The force on the spring
F=mg
F= 7*9.81
F=68.67N
Step two:
From Hooke's law, we can make k subject of formula and find the spring constant k, we have
F=kΔx---------1
make k subject of the formula
k=F/Δx
k= 68.67/ 0.085
k=807.88N/m
Answer:
(A) it's acceleration is negative but but it's velocity is positive
Explanation:
In the question it is given that begins to slow down so its speed is decreasing it is does not means that its speed is negative
For example let first the velocity of the car is 30 m/sec and when its velocity decreases it becomes 20 m/sec in 5 sec
So it is not negative at all
Now the acceleration is the rate of change of velocity


So acceleration is negative here
So option (a) will be the correct option
Answer:
a) FE = 0.764FG
b) a = 2.30 m/s^2
Explanation:
a) To compare the gravitational and electric force over the particle you calculate the following ratio:
(1)
FE: electric force
FG: gravitational force
q: charge of the particle = 1.6*10^-19 C
g: gravitational acceleration = 9.8 m/s^2
E: electric field = 103N/C
m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg
You replace the values of all parameters in the equation (1):

Then, the gravitational force is 0.764 times the electric force on the particle
b)
The acceleration of the particle is obtained by using the second Newton law:

you replace the values of all variables:

hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.
Answer:
ITS THE LAST ONE(4TH), I THINK
Explanation: