We have: F = m×a
Here, m = 90 Kg
a = 15 m/s²
Substitute their values into the expression:
F = 90 × 15
F = 1350 N
In short, Your Answer would be Option D
Hope this helps!
Answer:
x = -1.20 m
y = -1.12 m
Explanation:
as we know that four masses and their position is given as
5.0 kg (0, 0)
2.9 kg (0, 3.2)
4 kg (2.5, 0)
8.3 kg (x, y)
As we know that the formula of center of gravity is given as
Similarly for y direction we have
Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
(5 mi/hr) x (1hr/60min) x (10min) = 5 x 10 / 60 = <em>5/6 mile</em>
(5/6 mile) x (1,760 yd/mile) = <em>1,466 and 2/3 yards</em>