Everything starts from spectroscopy. Astronomers only have concentrated information at wavelengths that are emitted from the stars. What they do with this information is to obtain the frequency range of the stars and through spectroscopes they are responsible for dividing the radiation beams and determining the coincidence with the emission of those same waves, of chemical elements. From these observation techniques it is possible to obtain the composition and according to the color, obtaining characteristics such as temperature. The spectrum of stars consists of dark and bright lines called Fraunhofer lines. This spectrum is compared to the spectrum of different elements to find the composition of the stars. This is possible because the elements emit or absorb only specific wavelengths.
Answer:
The answer is "Choice C ".
Explanation:
The relationship between the E and V can be defined as follows:

Let,

When E=0

v is a constant value
Therefore, In the electric potential in a region is a constant value then the electric-field must be into zero that is everywhere in the given region, that's why in this question the "choice c" is correct.
The first step is the fusion of hydrogen into Deuterium.
When air<span> particles bunch up, it's </span>called<span> a compression-rarefaction.
When the </span>particles spread apart<span> its </span>called<span> a rarefaction.
</span>