Answer:
When the resistances are connected in the parallel the equivalent resistance will be always less than the value of the lowest resistance in the parallel circuit.
The equivalent resistance in the parallel circuit can be calculated using the following formula.
1/R=1/R1+1/R2+1/R3
1/R= 1/10+1/20+1/30
1/R=(6+3+2)/60
1/R=11/60
R=60/11
R=5.45 Ohms
When we double the distance between a source of light and the
surface on which it falls, the amount of illumination on the surface
decreases to <em>one fourth (1/4, 0.25))</em> of the original illumination.
Venus goes through phases similar to those of earths moon.
Answer:
Vf = 4.77 m/s
Explanation:
During the downward motion we can easily find the final velocity or the velocity with which the ball hits the ground, by using third equation of motion. The third equation of motion is given as follows:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = 9.8 m/s²
h = height = 1.16 m
Vf = Final Velocity of Ball = ?
Vi = Initial Velocity of Ball = 0 m/s (Since, ball was initially at rest)
Therefore, using these values in the equation, we get:
(2)(9.8 m/s²)(1.16 m) = Vf² - (0 m/s)²
Vf = √(22.736 m²/s²)
<u>Vf = 4.77 m/s</u>