1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
8

Two gage marks are placed exactly 250 mm apart on a 12-mm-diameter aluminum rod with E 5 73 GPa and an ultimate strength of 140

MPa. Knowing that the distance between the gage marks is 250.28 mm after a load is applied, determine (a) the stress in the rod, (b) the factor of safety
Engineering
1 answer:
NNADVOKAT [17]3 years ago
8 0

Answer:

81.76 N/mm² ( MPa), 1.71233

Explanation:

Modulus of elasticity = stress / strain

stress = modulus of elastic × strain

strain = ΔL / L = 250.28 mm - 250 mm / 250 mm = 0.00112

Modulus of elasticity E = 73 GPa = 73 × 10³ MPa where 1 MPa = 1 N/mm²

E = 73 × 10³N/mm²

stress =  73 × 10³N/mm²× 0.00112 = 81.76 N/mm² ( MPa)

b) Factor of safety = maximum allowable stress / induced stress = 140 MPa / 81.76 MPa = 1.71233

You might be interested in
A train consists of a 50 Mg engine and three cars, each having a mass of 30 Mg . If it takes 75 s for the train to increase its
ohaa [14]

Answer:

T = 15 kN

F = 23.33 kN

Explanation:

Given the data in the question,

We apply the impulse momentum principle on the total system,

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

we substitute

[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F( 75 - 0 ) =  1.75 × 10⁶

The resultant frictional tractive force F is will then be;

F =  1.75 × 10⁶ / 75

F = 23333.33 N

F = 23.33 kN

Applying the impulse momentum principle on the three cars;

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F(75-0) = 1.125 × 10⁶

The force T developed is then;

T =  1.125 × 10⁶ / 75

T = 15000 N

T = 15 kN

7 0
2 years ago
Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat trans
aksik [14]

Answer:

The heat is transferred is at the rate of 752.33 kW

Solution:

As per the question:

Temperature at inlet, T_{i} = 20^{\circ}C = 273 + 20 = 293 K

Temperature at the outlet, T_{o} = 200{\circ}C = 273 + 200 = 473 K

Pressure at inlet, P_{i} = 80 kPa = 80\times 10^{3} Pa

Pressure at outlet, P_{o} = 800 kPa = 800\times 10^{3} Pa

Speed at the outlet, v_{o} = 20 m/s

Diameter of the tube, D = 10 cm = 10\times 10^{- 2} m = 0.1 m

Input power, P_{i} = 400 kW = 400\times 10^{3} W

Now,

To calculate the heat transfer, Q, we make use of the steady flow eqn:

h_{i} + \frac{v_{i}^{2}}{2} + gH  + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH' + p_{s}

where

h_{i} = specific enthalpy at inlet

h_{o} = specific enthalpy at outlet

v_{i} = air speed at inlet

p_{s} = specific power input

H and H' = Elevation of inlet and outlet

Now, if

v_{i} = 0 and H = H'

Then the above eqn reduces to:

h_{i} + gH + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH + p_{s}

Q = h_{o} - h_{i} + \frac{v_{o}^{2}}{2} + p_{s}                (1)

Also,

p_{s} = \frac{P_{i}}{ mass, m}

Area of cross-section, A = \frac{\pi D^{2}}{4} =\frac{\pi 0.1^{2}}{4} = 7.85\times 10^{- 3} m^{2}

Specific Volume at outlet, V_{o} = A\times v_{o} = 7.85\times 10^{- 3}\times 20 = 0.157 m^{3}/s

From the eqn:

P_{o}V_{o} = mRT_{o}

m = \frac{800\times 10^{3}\times 0.157}{287\times 473} = 0.925 kg/s

Now,

p_{s} = \frac{400\times 10^{3}}{0.925} = 432.432 kJ/kg

Also,

\Delta h = h_{o} - h_{i} = c_{p}\Delta T =c_{p}(T_{o} - T_{i}) = 1.005(200 - 20) = 180.9 kJ/kg

Now, using these values in eqn (1):

Q = 180.9 + \frac{20^{2}}{2} + 432.432 = 813.33 kW

Now, rate of heat transfer, q:

q = mQ = 0.925\times 813.33 = 752.33 kW

4 0
2 years ago
List and explain 4 factors you need to observe while stick welding to make a good “consistent” bead
ch4aika [34]

Answer:I don’t know this one

Explanation:

5 0
2 years ago
What is the difference between a refrigeration cycle and a heat pump cycle?
sukhopar [10]

Answer:

In refrigeration cycle heat transfer from inside refrigeration

In heat pump cycle heat transfer from environment

Explanation:

heat cycle is mechanical process use for cool the temperature but

In refrigeration heat transfer from inside of refrigeration that decrease temperature of refrigerator and in heat pump it decrease temperature negligible as compare to refrigerator

5 0
3 years ago
For each topic, find the total number of blurts that were analyzed as being related to the topic. Order the result by topic id.
photoshop1234 [79]

Answer:

Explanation: see attachment below

8 0
2 years ago
Other questions:
  • WHEN WAS THE FIRST CAR INVENTED?
    13·2 answers
  • A stem and leaf display
    12·1 answer
  • 2. A fluid at 14.7 psi (lb-f per square inch) with kinematic viscosity (????????) 1.8 x10-4 ft2/sec and density(????????) 0.076
    11·1 answer
  • 5) A 80-kg man has a total foot imprint area of 480 cm2. Determine the pressure this man exerts on the ground if (a) he stands o
    5·1 answer
  • Air enters the compressor of an ideal Brayton refrigeration cycle at 100 kPa, 270 K. The compressor pressure ratio is 3, and the
    13·1 answer
  • Before you calculate the moment capacity for a steel beam, you have to determine the classification of beam.
    10·1 answer
  • A single-phase inductive load draws a 10 MW at 0.6 power factor lagging. Calculate the reactive power of a capacitor to be conne
    14·1 answer
  • List two possible reasons the engine oil could have a strong gasoline smell
    15·1 answer
  • Why are there few effective HCI standards?
    6·1 answer
  • Which option identifies why Ethan’s skills are valuable to his team in the following scenario?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!