Answer:
The young lady was his daughter.The shoemaker was frightened when he saw that she wants to sit near him and took his knife to frighten her and leave him alone to do his work
Explanation:
could uh name them since if i know any i would surely tryin help
Answer:
B. A software development firm needs someone to find and fix bugs on multiple computer platforms.
Explanation:
A software quality assurance engineer is someone who monitors every phase of the software development process so as to ensure design quality, making sure that the software adheres to the standards set by the development company. Finding bugs would make this intern a amazing bug finder
Answer:
0.4 gallons per second
Explanation:
A function shows the relationship between an independent variable and a dependent variable.
The independent variable (x values) are input variables i.e. they don't depend on other variables while the dependent variable (y values) are output variables i.e. they depend on other variables.
The rate of change or slope or constant of proportionality is the ratio of the dependent variable (y value) to the independent variable (x value).
Given that the garden hose fills a 2-gallon bucket in 5 seconds. The dependent variable = g = number of gallons, the independent variable = t = number of seconds.
Constant of proportionality = g / t = 2 / 5 = 0.4 gallons per second
Answer:
A periodic function is a function that returns to its value over a certain period at regular intervals an example is the wave form of flux density (B) = sin <em>wt</em>
Explanation:
A periodic function is a function that returns to its value over a certain period at regular intervals an example is the wave form of flux density (B) = sin <em>wt</em>
attached to the answer is a free plot of the output starting with zero degree for one coil rotating in a uniform magnetic field
B ( wave flux density ) = Bm sin<em>wt and w = </em>2
f =
rad/sec
Answer:
178 kJ
Explanation:
Assuming no heat transfer out of the cooling device, and if we can neglect the energy stored in the aluminum can, the energy transferred by the canned drinks, would be equal to the change in the internal energy of the canned drinks, as follows:
ΔU = -Q = -c*m*ΔT (1)
where c= specific heat of water = 4180 J/kg*ºC
m= total mass = 6*0.355 Kg = 2.13 kg
ΔT = difference between final and initial temperatures = 20ºC
Replacing by these values in (1), we can solve for Q as follows:
Q = 4180 J/kg*ºC * 2.13 kg * -20 ºC = -178 kJ
So, the amount of heat transfer from the six canned drinks is 178 kJ.