Explanation:
An perfect mass less spring, attached at one end and with a free mass attached at the other end, will have a distinct frequency of oscillation depending on its constant spring and mass. On the other hand, a spring with mass along its length will not have a characteristic frequency of oscillation.
Alternatively, based on its spring constant and mass per length, it will now have a wave Speed. It would be possible to use all wavelengths and frequencies, as long as the component fλ= S, where S is the spring wave size. If that sounds like longitudinal waves, like solid sound waves.
"A pitcher throws a baseball, and then the batter hits a homerun" is the one among the following choices given in the question that <span>best represents potential energy being converted to kinetic energy. The correct option among all the options that are given in the question is the second option or option "2". </span>
Answer:
As the mass of an object increases, its gravitational force increases.
As an object's distance to other objects increases, its gravitational force on those objects increases.
Explanation:
The gravitational force of one object on another is calculated with the equation
F = (G*m1*m2)/(r²),
where G is the gravitational constant,
M1 and M2 are the masses of the two objects, and
r is the distance between them
We can see that the force has a direct relationship with both of the mass values, and an inverse square relationship with the distance between them.
Hope this helped!
Answer:
I think the answer will be water ,sorry if ik wrong