Answer:
T°fussion of solution is -18°C
Explanation:
We have to involve two colligative properties to solve this. Let's imagine that the solute is non electrolytic, so i = 1
First of all, we apply boiling point elevation
ΔT = Kb . m . i
ΔT = Boiling T° of solution - Boiling T° of pure solvent
Kb = ebuliloscopic constant
105°C - 100° = 0.512 °C kg/mol . m . 1
5°C / 0.512 °C mol/kg = m
9.7 mol/kg = m
Now that we have the molality we can apply, the Freezing point depression.
ΔT = Kf . m . i
Kf = cryoscopic constant
0° - (T°fussion of solution) = 1.86 °C/m . 9.76 m . 1
- (1.86°C /m . 9.7 m) = T°fussion of solution
- 18°C = T°fussion of solution
I think it might be D or B
And my other two might be A or C
The prefix 'di' means two. Hence two atoms make up a diatomic molecule.
Hope this helps!
Answer:
Explanation:The pi-molecular orbitals in propene (CH3-CH=CH2) are essentially the ... This central carbon thus provides two p-orbitals – one for each pi bond – and these two different p-orbitals have to be perpendicular, leading to a twisted structure as shown: ... It all comes down to where the location of the electron-deficient carbon
Answer:
The answer is D.
Explanation:
Intermolecular force are negligible
When the distance between molecules decrease,
the attraction or repulsion become greater