The grams of oxygen that are produced is 228.8 grams
<em>calculation</em>
2H₂O₂ → 2H₂O +O₂
Step 1: use the mole ratio to determine the moles of O₂
from equation above H₂O₂:O₂ is 2:1
therefore the moles of O₂ = 14.3 moles ×1/2 = 7.15 moles
Step 2: find mass of O₂
mass = moles × molar mass
= 7.15 moles × 32 g/mol =228.8 g
Mostly about what it can do with its trunk! also about how strong it is or evan how long! love to help!
contact me if you need more info
-luna
The most viscous among the choices is D. Honey at room temperature.
Viscosities of liquids typically vary with temperature. The higher the temperature, the lower the viscosity. Among the choices, only motor oil and honey appear to be the most viscous. The clue that helps determined the answer are the words "hot" and "room temperature". Hot motor oil is less viscous, while honey at room temperature is more viscous. Even comparing their viscosities at room temperature, honey already has a higher viscosity than motor oil.
The flat sheet will completely rust before the iron cube. Since they both have the same volume, the flat sheet has more surface area than the small cube. This means more particles are exposed on the flat sheet that can react in a chemical reaction.
The partial stress of H2 is 737.47 mmHg Let's observe the Ideal Gas Law to find out the whole mols.
We count on that the closed vessel has 1L of volume
- P.V=n.R.T
- We must convert mmHg to atm. 760 mmHg.
- 1 atm
- 755 mmHg (755/760) = 0.993 atm
- 0.993 m.1L=n.0.082 L.atm/mol.K .
- 293 K(0.993 atm 1.1L)/(0.082mol.K /L.atm).
- 293K = n
- 0.0413mols = n
These are the whole moles. Now we are able to know the moles of water vapor, to discover the molar fraction of it.
- P.V=n.R.T
- 760 mmHg. 1 atm
- 17.5 mmHg (17.5 mmHg / 760 mmHg)=0.0230 atm
- 0.0230 m.1L=n.0.082 L.atm/mol.K.293 K(0.0230atm.1L)/(0.082mol.K/L.atm .293K)=n 9.58 × 10 ^ 4 mols = n.
- Molar fraction = mols )f gas/general mols.
- Molar fraction water vapor =9.58×10^ -four mols / 0.0413 mols
- Sum of molar fraction =1
- 1 - 9.58 × 10 ^ 4 × mols / 0.0413 ×mols = molar fraction H2
- 0.9767 = molar fraction H2
- H2 pressure / Total pressure =molar fraction H2
- H2 pressure / 55mmHg = =0.9767 0.9767 = h2 pressure =755 mmHg.
- 737,47 mmHg.
<h3>What is a mole fraction?</h3>
Mole fraction is a unit of concentration, described to be identical to the variety of moles of an issue divided through the whole variety of moles of a solution. Because it's miles a ratio, mole fraction is a unitless expression.
Thus it is clear that the partial pressure of H2 is 737,47 mmHg.
To learn more about partial pressure refer to the link :
brainly.com/question/19813237
<h3 />