<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps
the higher concentration of molecules, the faster a reaction can occur
Answer:
I will say that the the potential energy will be at its maximum.
Explanation:
potential energy deals with gravity and gravity deals with height, so when a object is in its maximum height it will have the maximum potential energy.
It is durable because it is one of the strongest metals and doesn't corrode easily.
Answer:
The percentage power lost in the transmission line if the voltage not stepped up is 50%.
Explanation:
Given that,
Current = 60 A
Voltage = 120 V
Resistance = 1.0 ohm
We need to calculate the power
Using formula of power

Where,I =current
V = voltage
Put the value into the formula


We need to calculate the percentage power lost in the transmission line
If the voltage is not stepped up
Then, the power loss

Put the value into the formula


The percentage power loss P''


Hence, The percentage power lost in the transmission line if the voltage not stepped up is 50%.