Given :
Reem took a wire of length 10 cm. Her friend Nain took a wire of 5 cm of the same material and thickness both of them connected with wires as shown in the circuit given in figure. The current flowing in both the circuits is the same.
To Find :
Will the heat produced in both the cases be equal.
Solution :
Heat released is given by :
H = i²Rt
Here, R is resistance and is given by :

So,
Now, in the question every thing is constant except for the length of the wire and from above equation heat is directly proportional to the length of the wire.
So, heat produced by Reem's wire is more than Nain one.
Hence, this is the required solution.
The correct answer for this question is "Two-car length rule." While driving, the principle that you should be used to keep the appropriate distance between your vehicle and the vehicle in front of you is to follow the <span>Two-car length rule. This rule is to be followed for safety.</span>
Answer:
Explanation:
When 238U which is radioactive turns into 206Pb , it becomes stable and no further disintegration is done . Hence in the initial period ratio of 238U undecayed and 206Pb formed will be very high because no of atoms of 238U in the beginning will be very high. Gradually number of 238U undecayed will go down and number of 206Pb formed will go up . In this way the ratio of 238U and 206Pb in the mixture will gradually reduce to be equal to one or even less than one .
In the given option we shall calculate their raio
1 ) ratio of 238U and 206Pb = 5
2 ) ratio of 238U and 206Pb = 4
3 )ratio of 238U and 206Pb = 1
4 ) ratio of 238U and 206Pb = 20
5 )ratio of 238U and 206Pb = 3
lowest ratio is 1 , hence this sample will be oldest.
Ranking from youngest to oldest
4 , 1 , 2 , 5 , 3 .
Answer:
r = 0.22m
Explanation:
To find the radius of the circular trajectory, you first take into account that the centripetal force of the charged particle, is equal to the electric force between the particle that is moving and the particle at the center of the orbit.
Then, you have:
(1)
m: mass of the particle = 20g = 20*10-3 kg
ac: centripetal acceleration = ?
q: charge of the particle = 5*10^-6C
Fe: electric force between the charges
The electric force is given by:
(2)
r: radius of the orbit
q': charge of the particle at the center of the orbit = -5*10^-6C
Furthermore, the centripetal acceleration is:
(3)
v: speed of the particle = 7m/s
You replace the expressions (2) and (3) in the equation (1) and solve for r:

Finally, you replace the values of all parameters in the previous expression:

The radius of the circular trajectory is 0.22m