1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
3 years ago
5

Pilot testing:

Engineering
1 answer:
andrew11 [14]3 years ago
6 0

Answer:

c. allows planners to work out any problems before the program is launched

Explanation:

Pilot testing is simply aimed at getting it right before the launch of a program, it is also called pilot run, pilot project, feasibility run, etc. Pilot testing is the rehearsal or practice done for an idea, program, research study or invention with few participants prior to lunching out the main program. The main purpose of pilot testing is to determine how feasible a project is, it can also help to evaluate the cost of an idea, invention, research study, etc.

You might be interested in
A 150 MVA, 24 kV, 123% three-phase synchronous generator supplies a large network. The network voltage is 27 kV. The phase angle
Aleks04 [339]

Answer:

the generator induced voltage is 60.59 kV

Explanation:

Given:

S = 150 MVA

Vline = 24 kV = 24000 V

X_{s} =1.23(\frac{V_{line}^{2}  }{s} )=1.23\frac{24000^{2} }{1500} =4723.2 ohms

the network voltage phase is

V_{phase} =\frac{V_{nline} }{\sqrt{3} } =\frac{27}{\sqrt{3} } =15.58kV

the power transmitted is equal to:

|E|=\frac{P*X_{s} }{3*|V_{phase}|sinO } ;if-O=60\\|E|=\frac{300*4.723}{3*15.58*sin60} =34.98kV

the line induced voltage is

|E_{line} |=\sqrt{3} *|E|=\sqrt{3} *34.98=60.59kV

7 0
3 years ago
What the answer fast
anygoal [31]
Viscosity isT=u(U/y) where T is shear stress & u is velocity and y is thr length
The answer is =2.57
7 0
3 years ago
What are the height and width of scissors?
timofeeve [1]
Short ones are 4.5 inches but long ones can be up to 8 inches.
8 0
2 years ago
It has a piece of 1045 steel with the following dimensions, length of 80 cm, width of 30 cm, and a height of 15 cm. In this piec
Serggg [28]

Answer:

material remove in 3 min is 16790.4 mm³/s

Explanation:

given data

length L = 80 cm = 800 mm

width W = 30 cm

height H = 15 cm

make grove length = 80 cm

width = 8 cm

depth = 10 cm

mill toll diameter = 4 mm

axial cutting depth = 20 mm

to find out

How much material removed in 3 minutes

solution

first we find time taken for length of advance that is

time = \frac{length}{advance}

here advance is given as 0.001166 mts / sec

so  time = \frac{800}}{0.001166*1000}

time = 686.106 seconds

now we find material remove rate that is

remove rate = mill toll rate × axial cutting depth × advance

remove rate = 4 × 20×0.001166 ×1000

remove rate = 93.28 mm³/s

so

material remove in 3 minute = 3 × 60 = 180 sec

so material remove in 3 min = 180 × 93.28

material remove in 3 min is 16790.4 mm³/s

7 0
3 years ago
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
Other questions:
  • How do scientists and engineers use math to help them?
    14·1 answer
  • You start your car and begin to pull out of a parking space. After leaving the space, You notice that the brake light on your in
    12·1 answer
  • A steel rectangular tube has outside dimensions of 150 mm x 50 mm and a wall thickness of 4 mm. State the inside dimensions, the
    5·1 answer
  • A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps,
    6·1 answer
  • A piston–cylinder assembly contains air, initially at 2 bar, 300 K, and a volume of 2 m3. The air undergoes a process to a state
    12·1 answer
  • You are traveling along an interstate highway at 32.0 m/s (about 72 mph) when a truck stops suddenly in front of you. You immedi
    11·1 answer
  • A motor cycle is moving up an incline of 1 in 30 at a speed of 80 km/h,and then suddenly the engine shuts down.The tractive resi
    11·1 answer
  • Define a separate subroutine for each of the following tasks respectively.
    6·2 answers
  • 8. What is the density of an object with a mass of 290.5 g and volume of 83 cm 3?​
    13·1 answer
  • A technician needs to check the heating operation of a heat pump that has no gauge access ports. The technician should start by:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!