Answer:
- the coating’s index of refraction is 1.25
- the required thickness is 104.1667 nm
Explanation:
Given the data in the question;
Thickness of coating t = 100 nm
wavelength λ = 500nm
we know that refractive index is;
t = λ/4n
make n, the subject of formula
t4n = λ
n = λ / 4t
we substitute
n = 500 / ( 4 × 100 )
n = 500 / 400
n = 1.25
Therefore, the coating’s index of refraction is 1.25
2)
given that;
Index of refraction of the coating; n = 1.20
λ = 500 nm
thickness of coating t = ?
t = λ / 4n
we substitute
t = 500 / ( 4 × 1.2 )
t = 500 / 4.8
t = 104.1667 nm
Therefore, the required thickness is 104.1667 nm
The relevant equation we can use in this problem is:
h = v0 t + 0.5 g t^2
where h is height, v0 is initial velocity, t is time, g is
gravity
Since it was stated that the rock was drop, so it was free
fall and v0 = 0, therefore:
h = 0 + 0.5 * 9.81 m/s^2 * (4.9 s)^2
<span>h = 117.77 m</span>
Because they occur at an atomic level, changing the actual structure of the thing.
Hope it helps
The feather's vertical position
is determined by

We take the feather's starting position to be the origin, and the downward direction to be positive. Then

so the answer is D.
Answer:
13.5
Explanation:
Mass: 5kg
Initial Velocity: -15
Final Velocity: 12
Force: 10
We can use the equation: Vf = Vi + at
We need to find acceleration, and we can use the equation, F=ma,
We have mass and the force so it would look like this, 10=5a, and 5 times 2 would equal 10, so acceleration would be 2.
Now we have all the variables to find time.
Back to Vf = Vi + at, plug the numbers in, 12 = -15 + 2(t)
Plugging them in into desmos gives 13.5 for time.