Hey give us m = 9.0 g = 9.0 x 10-3 kg, and a = 10,000 "g's" = 98000 m/s/s so:F = ma = (9.0 x 10-3 kg)(98000 m/s/s) = 882 N = 880 N
The car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.
Answer:
Explanation:
Momentum is measured as the product of mass of object with the velocity attained by that object.
Momentum of 2000 kg truck = Mass × Velocity
Momentum of 2000 kg truck = 2000×30 = 60000 N
Similarly, the momentum of 1000 kg car will be 1000× velocity of the 1000 kg car.
Since, it is stated that momentum of 2000 kg truck is equal to the momentum of 1000 kg of car, then the velocity of 1000 kg of car can be determined by equating the momentum of car and truck.
Momentum of 2000 kg truck = Momentum of 1000 kg car
60000=1000×velocity of 1000 kg car
Velocity of 1000 kg car = 60000/1000=60 m/s
So, the car should have a velocity of 60 m/s to attain the same momentum as that of the truck of 2000 kg.
Newton's third law: If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Opposite to the direction of the velocity which led it to its current position.
Explanation:
The direction of momentum when a vertically oscillating block comes to the rest momentarily will be opposite to the direction of the velocity that it has just followed to reach reach its current position.
The direction of change in momentum at the bottom will be upwards and at the top will be downwards.
The change in momentum is mathematically defined as:

where:
mass of the block
final velocity of the block
initial velocity of the block
When the block comes to rest it is due to the result of continuously decreasing velocity.
Answer:
Personally I think, that the answer is B.
Explanation: