Answer:
Explanation:
a ) After the attainment of terminal speed , object takes 4.5 s to cover a distance of 2 m
So terminal speed V = 2 / 4.5
= .444 m /s
When it attains terminal speed , acceleration becomes zero
0 = g - B x .444
B = 22.25 s⁻¹
b ) At t = 0 , v = 0
a = g - B v
a = g at t = 0
c ) When v = .15
a = g - 22.25 x .15
= 9.8 - 3.31
= 6.5 m /s²
Answer:
Kinetic energy of bigger rock will be more than that of smaller one.
Explanation:
Kinetic energy of the rock is given by,
Kinetic energy = 
As velocity of both the rocks are same. Thus, kinetic energy is directly proportional to the mass of the rock
Kinetic energy ∝ mass
So, For greater mass kinetic energy will be greater and for smaller mass kinetic energy will be smaller.
Hence, Kinetic energy of bigger rock will be more than that of smaller one.
Q before connected = Q after connected C1V1+C2V2 = (C1+C2) V
C1= 3×10^-6 F
V1= 480v
C2= 4×10^-6 F
V2= 500v
(3×10^-6)×(480) + (4×10^-6)×(500) = (3×10^-6 + 4×10^-6) × V
Simplifying the above, we get:
( 1440× 10^-6) + (2000 ×10^-6) = (7 × 10^-6) × V.
Further simplified as:
3440 × 10^-6 = 7 × 10^-6 × V
Making V the subject
V = 491.43volts
Therefore the potential difference across each capacitor is 491.43v
a. Speed is defined as rate of change of distance per unit time whereas velocity is defined as rate of change of displacement per unit time.
b.
is the total time taken in the trip
c.
is the total distance
d.
towards right from the starting point.
e. 
f.
towards right.
Explanation:
a.
Speed is a scalar quantity while velocity is a vector quantity.
Speed is defined as rate of change of distance per unit time whereas velocity is defined as rate of change of displacement per unit time.
Speed is a directionless quantity while velocity constitutes direction.
b.
<em>Total time of round trip when we're given:</em>
- distance travelled to the right,

- speed while travelling to the right,

- time spent at gas station,

- time spent while travelling back towards the left,

- speed while travelling to the left,

<em>Now time taken for travelling towards right:</em>



<u>Therefore total time taken in the round trip:</u>



c.
<em>Now, distance travelled towards left:</em>



<u>Therefore total distance:</u>



d.
Now, total displacement:


towards right from the starting point.
e.
<u>Average speed:</u>



f.
<u>Average velocity:</u>


towards right.