1 mole of any gas occupy 22.4 L at STP (standard temperature and pressure, 0°C and 1 atm).
Let given gases be 1 mole. So their volumes will be the same, 22.4 liters.
Density is the ratio of mass to volume.
By formula; density= mass/volume; d=m/V
To find out masses of gases, do the mole calculation.
By formula; mole= mass/molar mass; n= m/M; m= n*M
Molar masses are calculated as
1. C₂H₆ (ethane) = 2*12 g/mol + 6*1 g/mol= 30 g/mol
2. NO (nitrogen monoxide) = 1*14 g/mol + 1*16 g/mol= 30 g/mol
3. NH₃ (ammonia) = 1*14 g/mol + 3*1 g/mol= 17 g/mol
4. H₂O (water) = 2*1 g/mol + 1*16 g/mol= 18 g/mol
5. SO₂ (sulfur dioxide) = 1*32 g/mol + 2*16 g/mol= 64 g/mol
Use Periodic Table to get atomic mass of elements.
Since their volumes are equal, compounds having the same molar mass will have the same density.
Recall the formula d= m/V.
Ethane and nitrogen monoxide have the same density.
The answer is C₂H₆ and NO.
I don't think so. No way that I know anyway. It it could be done then the need for more coal to be mined would have stopped hundreds of years ago. Once coal is burned, it forms water and carbon dioxide (essentially) with some sulfur oxides.
How do you put that back together again. It's a little like humpty dumpty.
Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:
Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Scale and measuring tape.
To determine the mass and volume, you can find the density. The block will float if its density is less than that of water.