N - adica Newtonul.
Sper că team ajutat
Answer:
d) Both a and b are correct
Explanation:
Displacement: It is defined as the distance between initial and final position during motion.
Distance: It is defined as the total path length traveled by object
Or
It is the distance of one place from other place.
Student said that the displacement between my dorm and the lecture hall is 1km.
It is not displacement .It is distance or we say path length.
Therefore, he is using incorrect physical quantity for the information provided.
He should have called distance 1 km or path length 1 km.
Option d is true.
The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.
Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima. The latitude in the middle
of that intersection is 46.585° North. <u>That's</u> the number we need.
Here's how I would do it:
-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.
-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°.
-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.
This sets the limit of the highest in the sky that the moon can ever appear.
90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .
That doesn't happen regularly. It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).
Depending on the time of year, that can be any time of the day or night.
The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.
In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky. Then it's going to be somewhere near
67° above the horizon at midnight.
<span>The physical feel of H2O is the same regardless of the sample size of the substance. Water feels wet whether it is a single drop or equivalent in volume to an ocean. It is the way the substance feels no matter how much or how little there is present.</span>