Answer:
See explanation
Explanation:
The reactivity of metals has a lot to do with their position in the electrochemical series. However, it is also known that metallic character decreases across the period. This implies that as we move from left to right along the periodic table. Sodium, magnesium, aluminum and silicon continues to decrease in metallic character. As a matter of fact, silicon is a metalloid and not a pure metal.
Sodium reacts with cold water to give a vigorous reaction,magnesium and aluminium reacts with steam at red heat.
Silicon does not react with water, even as steam, under normal conditions.
Given:
Concentration of Fluoride ions = 0.100 M
Concentration of Hydrogen Fluoride = 0.126 M
Asked: Concentration of fluoride ions after the addition of 5ml of 0.0100 M HCl to 25 mL of the solution
Assume: 50:50 ratio of fluoride ions and HF
12.5ml*0.1mol/L *1L/1000mL + 12.5*0.126mol/L * 1L/1000mL = 2.825x10^-3 moles F-
5ml * 0.01 mol/L *1L/1000mL = 5x10^-5 moles
Assume: Volume additive
Final concentration = 2.825x10^-3 + 5x10^-5 moles/ 30 ml * 1000ml/L =0.0958 M
<span />
Answer:
C.)One electron in each p orbital
Explanation:
In a P-sublevel with 3 electrons, they should be arranged with one electron going into each p-orbitals.
This is in accordance with the Hund's rule of maximum multiplicity.
The rule states that "electrons go into degenerate orbitals or sub-levels(p,d and f) singly before paring up".
Since the p-orbital is 3-fold degenerate with a capacity to accommodate a maximum number of 6 electrons, given 3 electrons, they will follow the Hund's rule in order to fill the orbitals.
So one electron will go in each p - orbitals easily.
I believe the answer is Canada!