Answer:
Boron has 3 valence electrons
By using what they know to produce new and helpful products
Answer:
D
Explanation:
∆H° = ∆Hf ° (products) – ∆Hf ° (reactants)
Answer:
Option C. 1
Explanation:
Step 1:
Determination of the Neutron of both isotopes. This is illustrated below.
For isotope y xA:
Mass number = y
Atomic number = x
Neutron =..?
Atomic number = proton number = x
Mass number = Proton + Neutron
y = x + Neutron
Rearrange
Neutron = y – x
For isotope (y + 1) xA:
Mass number = y + 1
Atomic number = x
Neutron =.?
Atomic number = proton number = x
Mass number = Proton + Neutron
y + 1 = x + Neutron
Rearrange
Neutron = y + 1 – x
Step 2:
Determination of the difference between the neutron number of both isotopes. This is illustrated below:
For isotope y xA:
Neutron number = y – x
For isotope (y + 1) xA:
Neutron number = y + 1 – x
Difference in neutron number
=> (y + 1 – x) – (y – x)
=> y + 1 – x – y + x
Rearrange
=> y – y + 1 – x + x
=> 1
Therefore, the difference in the neutron number of both isotopes is 1
Explanation:
Once blood glucose levels increase, pancreatic insulin migrates into a fat cell via the blood stream. Insulin then binds in the plasma membrane of the cell to an Insulin Receptor (IR). Through autophosphorylation, phosphate groups are then added to the IR, causing GLUT4 molecules to come to the cell's surface.