Answer:
Explanation: Mendeleev arranged the elements on the basis of their atomic mass. Melting and boiling point were used as the physical characteristics in deciding the position of elements. He arranged the elements and wrote the formula of their oxides and hydrides which seemed to possess same chemical formula.
Explanation:
Answer:
Under high temperatures and low pressure, gases behave the most ideal.
Explanation:
Low pressure reduces the effect of the finite size of real particles by increasing the volume around each particle, and a high temperature gives enough kinetic energy to the particles to better overcome the attractions that exist between real particles. (Prevents sticking.)
In summary, real gases behave more like ideal gases when they are far away from a phase boundary, (condensation or freezing).
Answer:
nice
Explanation:
you can do it just try your best
Answer: C6H6
Explanation: Molecular Formula is the molecular mass divided by the empirical formula mass of CH which is C 12and H is 1 so 12 + 1= 13 g CH
Solution:
78.11 g CH / 13 g CH = 6
Answer:
It would get <u>colder</u>
Explanation:
The lattice energy is the energy involved in the disruption of interactions between the ions of the salt. In this case, we have: ΔHlat = 350 kJ/mol > 0, so it is an endothermic process (the energy is absorbed).
The solvation energy is the energy involved in forming interactions between water molecules and the ions of the salt. In this case, we have: ΔHsolv = 320 kJ/mol > 0, so it is an endothermic process (the energy is absorbed).
The dissolution process involve both processes: the disruption of ion-ion interactions of the salt and the solvation process. Thus, the enthalphy change (ΔHsol) in the preparation of the solution is calculated as the addition of the lattice energy and solvation energy:
ΔHsol= ΔHlat + ΔHsolv = 350 kJ/mol + 320 kJ/mol = 370 kJ/mol
370 kJ/mol > 0 ⇒ endothermic process
Since the preparation of the solution is an <u>endothermic</u> process, it will absorb energy from the surroundings, so <u>the solution would get colder</u>.