Answer:
the value of equilibrium constant for the reaction is 8.5 * 10⁷
Explanation:
Ti(s) + 2 Cl₂(g) ⇄ TiCl₄(l)
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
Given that,
We are given:
Equilibrium amount of titanium = 2.93 g
Equilibrium amount of titanium tetrachloride = 2.02 g
Equilibrium amount of chlorine gas = 1.67 g
We calculate the No of mole = mass / molar mass
mass of chlorine gas = 1.67 g
Molar mass of chlorine gas = 71 g/mol
mole of chlorine = 1.67 / 71
= 7.0L
Concentration of chlorine is = no of mole / volume
= 0.024 / 7
= 3.43 * 10⁻³M
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
= ![\frac{1}{[3.43 * 10^-^3]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5B3.43%20%2A%2010%5E-%5E3%5D%5E2%7D)
= 8.5 * 10⁷
Hey there! Let's get that problem solved!
First: Let's define, "solution."
Solution: <span>a liquid mixture in which the minor component (the solute) is uniformly distributed within the major component (the solvent).
Next: Ask yourself, "can a solution be taken apart?"
In some cases, yes. It can.
The solution of salt water for example, can be physically separated by evaporation. (place salt-water in a pot on a heated stove, place the cover to the pot on the opening, wait a few minutes, remove the top, and you can (and taste) the water without the salt!) </span><span />
Answer:
Heat transfer in step 2 = 47.75 J
Explanation:
Internal energy = heat + work done
U = Q + W
In a cyclic process the total internal energy change of the system = 0.
In the process there are two steps. The total heat exchange in the process is the sum of heat exchanges in the two processes.
We have to find the heat exchange in step 2.
In step 1,
W = 1.25 J Q = -37 J
= -37 + 1.25 = -35.75 J
In step 2, the internal energy change will be negative of that in step 1.
U = 35.75 J
W = -12 J
U = Q + W
35.75 = Q -12
Q = 47.75 J
Heat transfer in step 2 = 47.75 J
Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.