Answer:
Explanation:
In one Ca(OH)₂ molecule, there are 5 atoms (1 Ca, 2 O and 2 H). This means that in 1.005x10²⁴ Ca(OH)₂ molecules, there are (5 * 1.005x10²⁴) 5.025x10²⁴ atoms.
To <u>convert molecules into moles</u>, we use <em>Avogadro's number</em>:
- 1.005x10²⁴ molecules *
= 1.6686 moles
Finally, we <u>convert moles into grams</u> using the <em>molar mass of Ca(OH)₂</em>:
- 1.6686 moles * 74.093 g/mol = 123.63 g
One benefit of this is that the weaknesses of some of their plans are covered by better plans. Another is that if the final plan doesn’t result, there are already many other ideas to go off of. A final benefit is that if the overall plan does work, it can still be easily improvised. Hope this helps! After all, this question is more opinion based.
Hello! I hope this helps
Answer: ATP ( adenosine triphosphate) is considered as the energy currency of the cell as it stores energy in the cell. It is an example of chemical potential energy because energy is stored in the high energy containing phosphoanhydride bond (between phosphate molecules in the ATP).
Answer:
Option D. 30 g
Explanation:
The balanced equation for the reaction is given below:
2Na + S —> Na₂S
Next, we shall determine the masses of Na and S that reacted from the balanced equation. This is can be obtained as:
Molar mass of Na = 23 g/mol
Mass of Na from the balanced equation = 2 × 23 = 46 g
Molar mass of S = 32 g/mol
Mass of S from the balanced equation = 1 × 32 = 32 g
SUMMARY:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Finally, we shall determine the mass sulphur, S needed to react with 43 g of sodium, Na. This can be obtained as follow:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Therefore, 43 g of Na will react with = (43 × 32)/46 = 30 g of S.
Thus, 30 g of S is needed for the reaction.